Today's topics

- · Orders of growth of processes
- · Relating types of procedures to different orders of growth

2/15/2007

6.001 SICP

1/49

Computing factorial

 Takes longer to run as n gets larger, but still manageable for large n (e.g. n = 10000 – takes about 13 seconds of "real time" in DrScheme; while n = 1000 – takes about 0.2 seconds of "real time")

2/15/2007

6.001 SICP

2/43

Fibonacci numbers

The Fibonacci numbers are described by the following equations:

```
fib(0) = 0

fib(1) = 1

fib(n) = fib(n-2) + fib(n-1) for n \ge 2

Expanding this sequence, we get

fib(0) = 0

fib(1) = 1

fib(2) = 1

fib(3) = 2

fib(4) = 3

fib(5) = 5

fib(6) = 8

fib(7) = 13

...
```

A contrast to (fact n): computing Fibonacci

A contrast: computing Fibonacci

• Later we'll see that when calculating (fib n) , we need more than $2^{n/2}$ addition operations

(fib 100) uses + at least 2^{50} times = 1,125,899,906,842,624 (fib 2000) uses + at least 2^{1000} times

=10,715,086,071,862,673,209,484,250,490,600,018,105,614,048,117,055,336,074,437,503,883,703,510,511,249,361,224,931,983,788,156,958,581,275,946,729,175,531,468,251,871,482,565,923,140,435,984,577,746,986,574,803,934,567,774,824,203,985,427,074,605,062,371,141,877,954,182,153,046,474,983,581,941,267,398,767,559,185,543,946,077,062,914,571,196,477,686,542,167,660,429,831,652,624,386,837,205,668,069,376

2/15/2007

6.001 SICP

Computing Fibonacci: putting it in context

- A rough estimate: the universe is approximately 10^{10} years = $3x10^{17}$ seconds old
- Fastest computer around (not your laptop) can do about 280x10¹² arithmetic operations a second, or about 10³² operations in the lifetime of the universe
- 2¹⁰⁰ is roughly 10³⁰
- So with a bit of luck, we could run (fib 200) in the lifetime of the universe ...
- A more precise calculation gives around 1000 hours to solve (fib 100)
- That is 1000 6.001 lectures, or 40 semesters, or 20 years of 6.001 or ...

2/15/2007

2/15/2007

6.001 SICP

1

An overview of this lecture

- Measuring time requirements (complexity) of a function
- Simplifying the time complexity with asymptotic notation

6.001 SICP

- · Calculating the time complexity for different functions
- · Measuring space complexity of a function

2/15/2007

Measuring the time complexity of a function

- Suppose n is a parameter that measures the size of a problem
 - For fact and fib, n is just the procedure's parameter
- Let t(n) be the amount of time necessary to solve a problem of size n
- What do we mean by "the amount of time"? How do we measure "time"?
 - Typically, we will define t(n) to be the number of primitive operations (e.g. the number of additions) required to solve a problem of size n

2/15/2007 6.001 SICP 8/43

An example: factorial

- Define t(n) to be the number of multiplications required by (fact n)
- By looking at fact, we can see that:

$$t(0) = 0$$

 $t(n) = 1 + t(n-1)$ for $n \ge 1$

• In other words: solving (fact n) for any n ≥ 1 requires one more multiplication than solving (fact (- n 1))

2/15/2007 6.001 SICP 9/4

Expanding the recurrence

$$t(0) = 0$$

$$t(n) = 1 + t(n-1) \text{ for } n > = 1$$

$$t(0) = 0$$

$$t(1) = 1 + t(0) = 1$$

$$t(2) = 1 + t(1) = 2$$

$$t(3) = 1 + t(2) = 3$$

In general:

$$t(n) = n$$

2/15/2007 6

Expanding the recurrence

$$t(0) = 0$$

 $t(n) = 1 + t(n-1)$ for $n > 1$

- How would we prove that t(n) = n for all n?
- Proof by induction (remember from last lecture?):
 - Base case: t(n) = n is true for n = 0
 - Inductive step: if t(n) = n then it follows that t(n+1) = n+1
 - Hence by induction this is true for all *n*

2/15/2007 6.001 SICP

A second example: Computing Fibonacci

By looking at fib, we can see that:

```
t(0) = 1

t(1) = 2

t(n) = 5 + t(n-1) + t(n-2) for n \ge 2
```

• In other words: solving (fib n) for any $n \ge 2$ requires 5 more primitive ops than solving (fib (- n 1)) and solving (fib (- n 2))

2/15/2007 6.001 SICP 12/43

Looking at the Recurrence

t(0) = 1t(n) = 5 + t(n-1) + t(n-2) for $n \ge 2$

- We can see that $t(n) \ge t(n-1)$ for all $n \ge 2$
- So, for $n \ge 2$, we have

t(n) = 5 + t(n-1) + t(n-2)≥ 2 t(n-2)

- Every time n increases by 2, we more than double the number of primitive ops that are required
- If we iterate the argument, we get

 $t(n) \ge 2 t(n-2) \ge 4 t(n-4) \ge 8 t(n-6) \ge 16 t(n-8) \dots$

· A little more math shows that

 $t(n) \geq 2^{n/2}$

6.001 SICP 2/15/2007

13/43

Different Rates of Growth

· So what does it really mean for things to grow at different rates?

	n	t(n) = log n	t(n) = n	$t(n) = n^2$	$t(n) = n^3$	$t(n) = 2^n$
١		(logarithmic)	(linear)	(quadratic)	(cubic)	(exponential)
	1	0	1	1	1	2
	10	3.3	10	100	1000	1024
	100	6.6	100	10,000	10^6	~10^30
	1,000	10.0	1,000	10^6	10^9	~10^300
١	10,000	13.3	10,000	10^9	10^12	~10^3,000
-	100,000	16.68	100,000	10^12	10^15	~10^30,000

6.001 SICP 2/15/2007 14/43

Asymptotic Notation

· Formal definition:

We say t(n) has order of growth $\Theta(f(n))$ if there are constants N, k_1 and k_2 such that for all $n \ge N$, we have $k_1 f(n) \le t(n) \le k_2 f(n)$

- · This is what we call a tight asymptotic bound.
- Examples

t(n)=n has order of growth $\Theta(n)$ because $1n \le t(n) \le 1n$ for all $n \ge 1$ (pick N=1, $k_1=1$, $k_2=1$)

t(n)=8n has order of growth $\Theta(n)$

because $8n \le t(n) \le 8n$ for all $n \ge 1$ (pick N=1, k₁=8, k₂=8)

Asymptotic Notation

· Formal definition:

We say t(n) has order of growth $\Theta(f(n))$ if there are constants N, k_1 and k_2 such that for all $n \ge N$, we have $k_1 f(n) \le t(n) \le k_2 f(n)$

More examples

 $t(n)=3n^2$ has order of growth $\Theta(n^2)$ because $3n^2 \le t(n) \le 3n^2$ for all $n \ge 1$

(pick N=1, $k_1=3$, $k_2=3$)

 $t(n)=3n^2+5n+3$ has order of growth $\Theta(n^2)$ because $3n^2 \le t(n) \le 4n^2$ for all $n \ge 6$ or because $3n^2 \le t(n) \le 11n^2$ for all $n \ge 1$ (pick N=6, k₁=3, k₂=4) (pick N=1, k₁=3, k₂=11)

16/43

Theta, Big-O, Little-o

- $\Theta(f(n))$ is called a tight asymptotic bound because it squeezes t(n) from above and below:
 - $\Theta(f(n))$ means $k_1 f(n) \le t(n) \le k_2 f(n)$

"theta"

- · We can also talk about the upper bound or lower bound separately
 - O(f(n)) means $t(n) \le k_2 f(n)$

"big-O"

• $\Omega(f(n))$ means $k_1 f(n) \le t(n)$

"omega"

- · Sometimes we will abuse notation and use an upper bound as our approximation
 - We should really use "big-O" notation in that case, saying that t(n) has order of growth O(f(n)), but we are sometimes sloppy and call this $\Theta(f(n))$ growth.

6.001 SICP

2/15/2007

Motivation

• In many cases, calculating the precise expression for t(n) is laborious, e.g.:

 $t(n) = 4n^3 + 18n^2 + 14$ $t(n) = 5n^3 + 6n^2 + 8n + 7$

- In both of these cases, t(n) has order of growth $\Theta(n^3)$
- · Advantages of asymptotic notation
 - In many cases, it's much easier to show that t(n) has a particular order of growth, e.g., cubic, rather than calculating a precise expression for t(n)
 - Usually, the order of growth is what we really care about: the most important thing about the above functions is that they are both **cubic** (i.e., have order of growth $\Theta(n^3)$)

Some common orders of growth

```
\Theta(1)
           Constant
\Theta(\log n) Logarithmic growth
\Theta(n)
           Linear growth
\Theta(n^2)
           Quadratic growth
\Theta(n^3)
           Cubic growth
\Theta(2^n)
           Exponential growth
\Theta(\alpha^n) Exponential growth for any \alpha > 1
                                   6.001 SICP
```

An example: factorial

```
(define (fact n)
  (if (= n 0)
       (* n (fact (- n 1)))))
```

- Define t(n) to be the number of multiplications required by (fact n)
- · By looking at fact, we can see that:

```
t(0) = 0
t(1) = 1 + t(n-1) for n >= 1
```

• Solving this recurrence gives t(n) = n, so order of growth is $\Theta(n)$

2/15/2007 6.001 SICP 20/43

A general result: linear growth

For any recurrence of the form

```
t(0) = c_1
   t(n) = c_2 + t(n-1) for n \ge 1
  where c_1 is a constant \geq 0
  and c_2 is a constant > 0
Then we have linear growth, i.e.,
              Θ(n)
Why?
   • If we expand this out, we get
```

- $t(n) = c_1 + nc_2$
- And this has order of growth $\Theta(n)$

2/15/2007

Connecting orders of growth to algorithm design

- We want to compute a^b , just using multiplication and addition
- Remember our stages:
 - · Wishful thinking
 - Decomposition
 - · Smallest sized subproblem

2/15/2007 22/43

Connecting orders of growth to algorithm design

- · Wishful thinking
 - Assume that the procedure my-expt exists, but only solves smaller versions of the same problem
- · Decompose problem into solving smaller version and using result

```
a^n = a \cdot a \cdots a = a \cdot a^{n-1}
 (define my-expt
     (lambda (a n)
           (* a (my-expt a (- n 1)))))
```

2/15/2007

6.001 SICP

Connecting orders of growth to algorithm design

- · Identify smallest size subproblem • $a^0 = 1$

```
(define my-expt
   (lambda (a n)
      (if (= n 0)
          (* a (my-expt a (- n 1))))))
```

The order of growth of my-expt

```
(define my-expt
    (lambda (a n)
       (if (= n 0)
             (* a (my-expt a (- n 1))))))
• Define the size of the problem to be n (the second parameter)
• Define t(n) to be the number of primitive operations required
• By looking at the code, we can see that t(n) has the form:
     t(0) = 1
      t(n) = 3 + t(n-1) for n \ge 1
· Hence this is also linear
                              6.001 SICP
```

Using different processes for the same goal

- Are there other ways to decompose this problem?
- · We can take advantage of the following trick:

New special form:

```
(cond ((consequent> <consequent> ...)
    ((consequent> <consequent> ...)
    (else <consequent> <consequent>))
```

6.001 SICP 2/15/2007

The order of growth of new-expt

```
(define (new-expt a n)
 (cond ((= n 0) 1)
        ((even? n) (new-expt (* a a) (/ n 2)))
        (else (* a (new-expt a (- n 1))))))
```

- If n is even, then 1 step reduces to n/2 sized problem
- If n is odd, then 2 steps reduces to n/2 sized problem
- Thus in at most 2k steps, reduces to n/2^k sized problem
- · We are done when problem size is just 1, which implies order of growth in time of

Θ(log n)

The order of growth of new-expt

```
(define (new-expt a n)
  (cond ((= n 0) 1)
        ((even? n) (new-expt (* a a) (/ n 2)))
        (else (* a (new-expt a (- n 1))))))
```

• *t(n)* has the following form:

$$t(0) = 1$$

 $t(n) = 4 + t(n/2)$ if *n* is even
 $t(n) = 4 + t(n-1)$ if *n* is odd

· It follows that

$$t(n) = 8 + t((n-1)/2)$$
 if *n* is odd

28/43

26/43

A general result: logarithmic growth

For any recurrence of the form

$$t(0)=c_1$$

$$t(n)=c_2+t(n/2) \text{ for } n\geq 1$$
 where c_1 is a constant ≥ 0 and c_2 is a constant > 0
Then we have **logarithmic growth**, i.e.,

Θ(log n)

- · Intuition: at each step we halve the size of the problem
- We can only halve n around log n times before we reach the base case (e.g. n=1 or n=0)

2/15/2007

6.001 SICP

25/43

Different Rates of Growth

· Note why this makes a difference

n	t(n) = log n	t(n) = n	$t(n) = n^2$	$t(n) = n^3$	$t(n) = 2^n$
	(logarithmic)	(linear)	(quadratic)	(cubic)	(exponential)
1	0	1	1	1	2
10	3.3	10	100	1000	1024
100	6.6	100	10,000	10^6	1.3 x 10^30
1,000	10.0	1,000	10^6	10^9	1.1 x 10^300
10,000	13.3	10,000	10^9	10^12	
100,000	16.68	100,000	10^12	10^15	

Back to Fibonacci

```
(define fib
   (lambda (n)
      (cond ((= n 0) 0)
             ((= n 1) 1)
             (else (+ (fib (- n 1))
                      (fib (- n 2)))))))
```

• If t(n) is defined as the number of primitive operations (=, +, -), then:

```
t(0) = 1
t(1) = 2
t(n) = 5 + t(n-1) + t(n-2) for n \ge 2
```

• And for $n \ge 2$ we have

```
t(n) \ge 2t(n-2)
               6.001 SICP
```

2/15/2007

31/43

Another general result: exponential growth

· If we can show:

```
t(0) = c_1
     t(n) \ge c_2 + \alpha t(n-\beta) for n \ge 1
with constants c_1 \ge 0, c_2 > 0,
and constant \alpha > 1
and constant \beta \ge 1
```

Then we have exponential growth, i.e.,

$$\Omega(\alpha^{n/\beta})$$

• Intuition: Every time we add β to the problem size n, the amount of computation required is **multiplied** by a factor of α .

6.001 SICP

2/15/2007

32/43

Why is our version of fib so inefficient?

```
(define fib
   (lambda (n)
      (cond ((= n 0) 0)
             ((= n 1) 1)
             (else (+ (fib (- n 1))
                      (fib (- n 2)))))))
```

- When computing (fib 6), the recursion computes (fib 5) and (fib 4)
- The computation of (fib 5) then involves computing (fib 4) and (fib 3). At this point (fib 4) has been computed twice. Isn't this wasteful?

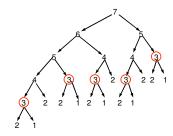
Why is our version of fib so inefficient?

- Let's draw the computation tree: the subproblems that each (fib n) needs to call
- · We'll use the notation

...to signify that computing (fib 5) involves recursive calls to (fib 4) and (fib 3)

34/43

The computation tree for (fib 7)



• There's a lot of repeated computation here: e.g., (fib 3) is recomputed 5 times

2/15/2007 6.001 SICP · Order of growth is

2/15/2007

(define (ifib n) (fib-iter 0 1 0 n))

An efficient implementation of Fibonacci

(define (fib-iter i a b n) (if (= i n) (fib-iter (+ i 1) (+ a b) a n)))

• Recurrence (measured in number of primitive operations):

t(0) = 1t(n) = 3 + t(n-1) for $n \ge 1$

 $\Theta(n)$

ifib is now linear

 If you trace the function, you will see that we avoid repeated computations. We've gone from exponential growth to linear growth!

```
(ifib 5)
(fib-iter 0 1 0 5)
(fib-iter 1 1 1 5)
(fib-iter 2 2 1 5)
(fib-iter 3 3 2 5)
(fib-iter 4 5 3 5)
(fib-iter 5 8 5 5)
```

6.001 SICP 2/15/2007

How much space (memory) does a procedure require?

- So far, we have considered the order of growth of t(n) for various procedures. T(n) is the **time** for the procedure to run, when given an input of size n.
- Now, let's define s(n) to be the **space** or **memory** requirements of a procedure when the problem size is n. What is the order of growth of s(n)?
- · Note that for now we will measure space requirements in terms of the maximum number of pending operations.

6.001 SICP 2/15/2007

38/43

Tracing factorial

```
(define (fact n)
   (if (= n 0)
        (* n (fact (- n 1)))))

    A trace of fact shows that it leads to a recursive process, with

 pending operations.
(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 (* 1 (fact 0)))))
(* 4 (* 3 (* 2 (* 1 1))))
(* 4 (* 3 (* 2 1)))
24
```

Tracing factorial

37/43

- In general, running (fact n) leads to n pending operations
- · Each pending operation takes a constant amount of memory
- In this case, s(n) has order of growth that is linear in space: $\Theta(n)$

2/15/2007 40/43

A contrast: iterative factorial

```
(define (ifact n) (ifact-helper 1 1 n))
(define (ifact-helper product i n)
  (if (> i n)
      product
      (ifact-helper (* product i)
                      (+ i 1)
                     n)))
 2/15/2007
                      6.001 SICP
```

A contrast: iterative factorial

```
• A trace of (ifact 4):
(ifact 4)
(ifact-helper 1 1 4)
(ifact-helper 1 2 4)
(ifact-helper 2 3 4)
(ifact-helper 6 4 4)
(ifact-helper 24 5 4)
```

- (ifact n) has no pending operations, so s(n) has an order of growth that is constant $\Theta(1)$
- Its time complexity t(n) is $\Theta(n)$
- In contrast, (fact n) has linear growth in both space and time $\Theta(n)$
- In general, iterative processes often have a lower order of growth for s(n) than recursive processes 2/15/2007

Summary

- We've described how to calculate t(n), the time complexity of a procedure as a function of the size of its input
- · We've introduced asymptotic notation for orders of growth
- There is a **huge** difference between exponential order of growth and non-exponential growth, e.g., if your procedure has

$$t(n) = \Theta(2^n)$$

You will not be able to run it for large values of n.

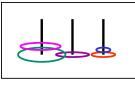
- We've given examples of procedures with linear, logarithmic, and exponential growth for t(n). Main point: you should be able to work out the order of growth of t(n) for simple procedures in Scheme
- The space requirements s(n) for a procedure depend on the number of pending operations. Iterative processes tend to have fewer pending operations than their corresponding recursive processes.

2/15/2007 6.001 SICP 43/43

2/15/2007 6.001 SICP 44/43

Towers of Hanoi

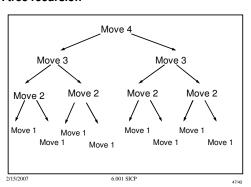
- · Three posts, and a set of different size disks
- Any stack must be sorted in decreasing order from bottom to top
- The goal is to move the disks one at a time, while preserving these conditions, until the entire stack has moved from one post to another



2/15/2007 6.001 SICP

Towers of Hanoi

A tree recursion



Orders of growth for towers of Hanoi

- What is the order of growth in time for towers of Hanoi?
- What is the order of growth in space for towers of Hanoi?

2/15/2007 6.001 SICP

Another example of different processes

Suppose we want to compute the elements of Pascal's triangle

```
1
1 1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
```

2/15/2007

6.001 SICP

Pascal's triangle

- · We need some notation
 - Let's order the rows, starting with n=0 for the first row
 - The nth row then has n+1 elements
 - Let's use P(j,n) to denote the jth element of the nth row.
 - We want to find ways to compute P(j,n) for any n, and any j, such that 0 <= j <= n

2/15/2007

6.001 SICP 50/43

52/43

Pascal's triangle the traditional way

- Traditionally, one thinks of Pascal's triangle being formed by the following informal method:
 - The first element of a row is 1
 - The last element of a row is 1
 - To get the second element of a row, add the first and second element of the previous row
 - To get the k'th element of a row, and the (k-1)'st and k'th element of the previous row

2/15/2007

6.001 SICP

51/43

Pascal's triangle the traditional way

• Here is a procedure that just captures that idea:

2/15/2007 6.001 SI

Pascal's triangle the traditional way

- · What kind of process does this generate?
- · Looks a lot like fibonacci
 - There are two recursive calls to the procedure in the general case
 - In fact, this has a time complexity that is exponential and a space complexity that is linear

2/15/2007

6.001 SICP

53/43

Solving the same problem a different way

- · Can we do better?
- Yes, but we need to do some thinking.
 - Pascal's triangle actually captures the idea of how many different ways there are of choosing objects from a set, where the order of choice doesn't matter.
 - P(0, n) is the number of ways of choosing collections of no objects, which is trivially 1.
 - P(n, n) is the number of ways of choosing collections of n objects, which is obviously 1, since there is only one set of n things.
 - P(j, n) is the number of ways of picking sets of j objects from a set of n objects.

2/15/2007 6.001 SICP

Solving the same problem a different way

- · So what is the number of ways of picking sets of j objects from a set of n objects?
 - Pick the first one there are n possible choices
 - Then pick the second one there are (n-1) choices left.
 - · Keep going until you have picked j objects

$$n(n-1)...(n-j+1) = \frac{n!}{(n-j)!}$$

· But the order in which we pick the objects doesn't matter, and there are i! different orders, so we have

$$\frac{n!}{(n-j)! \, j!} = \frac{n(n-1)...(n-j+1)}{j(j-1)....1}$$

2/15/2007

55/43

Solving the same problem a different way

• So here is an easy way to implement this idea:

```
(define pascal
  (lambda (j n)
      (/ (fact n)
         (* (fact (- n j)) (fact j)))))
```

- · What is complexity of this approach?
- · Three different evaluations of fact
- · Each is linear in time and in space
- So combination takes 3n steps, which is also linear in time; and has at most n deferred operations, which is also linear in space

2/15/2007

6.001 SICP

Solving the same problem a different way

· What about computing with a different version of fact? (define pascal

- What is complexity of this approach?
 - · Three different evaluations of fact
 - · Each is linear in time and constant in space
 - So combination takes 3n steps, which is also linear in time; and has no deferred operations, which is also constant in space

Solving the same problem the direct way

$$\frac{n!}{(n-j)!} = \frac{n(n-1)...(n-j+1)}{j(j-1)....1}$$

56/43

58/43

· Now, why not just do the computation directly?

```
(define pascal
    (lambda (j n)
        (/ (help n 1 (+ n (- j) 1))
           (help j 1 1))))
(define help
   (lambda (k prod end)
     (if (= k end)
         (* k prod)
         (help (- k 1) (* prod k) end))))
```

Solving the same problem the direct way

- · So what is complexity here?
 - · Help is an iterative procedure, and has constant space and linear time
 - This version of Pascal only uses two versions of help (as opposed the previous version that used three versions of ifact).
 - In practice, this means this version uses fewer multiplies that the previous one, but it is still linear in time, and hence has the same order of growth.

2/15/2007

6.001 SICP

So why do these orders of growth matter?

- · Main concern is general order of growth
 - Exponential is very expensive as the problem size grows.
 - · Some clever thinking can sometimes convert an inefficient approach into a more efficient one.
- · In practice, actual performance may improve by considering different variations, even though the overall order of growth stays the same.