Today’s topics

« Orders of growth of processes
« Relating types of procedures to different orders of growth

2/15/2007 6.001 SICP

Computing factorial

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))
» We can run this for various values of n:
(fact 10)
(fact 100)
(fact 1000)
(fact 10000)

« Takes longer to run as n gets larger, but still manageable for large n
(e.g. n=10000 — takes about 13 seconds of “real time” in DrScheme;
while n= 1000 — takes about 0.2 seconds of “real time”)

2/15/2007 6.001 SICP

Fibonacci numbers

The Fibonacci numbers are described by the following equations:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n-2) + fib(n-1) forn 2 2
Expanding this sequence, we get
fib(0) = 0
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13

2/15/2007 6.001 SICP
343

A contrast to (fact n):computing Fibonacci

(define (£fib n)

(if (=n 0)
0
(if (= n 1)
1

(+ (fib (- n 1)) (fib (- n 2))))))
» We can run this for various values of n:
(£ib 10)
(fib 20)
(£ib 100)
(fib 1000)
These take much longer to run as n gets larger

2/15/2007 6.001 SICP s

A contrast: computing Fibonacci

(define (fib n)

(if (= n 0)
0
(if (= n 1)
1

(+ (fib (- n 1)) (fib (- n 2))))))
« Later we'll see that when calculating (£ib n), we need
more than 2"2 addition operations
(£ib 100) uses + at least 250 times = 1,125,899,906,842,624
(£ib 2000) uses + at least 21000 times

=10,715,086,071,862,673,209,484,250,490,600,018,105,614,048,117,055,336,074,437,
503,883,703,510,511,249,361,224,931,983,788,156,958,581,275,946,729,175,531,468,
251,871,452,856,923,140,435,984,577,574,698,574,803,934,567,774,824,230,985,421,
074,605,062,371,141,877,954,182,153,046,474,983,581,941,267,398,767,559,165,543,
946,077,062,914,571,196,477,686,542,167,660,429,831,652,624,386,837,205,668,069,

376

2/15/2007 6.001 SICP
543

Computing Fibonacci: putting it in context

- A rough estimate: the universe is approximately 1010 years
=3x10'7 seconds old

« Fastest computer around (not your laptop) can do about
280x10'2 arithmetic operations a second, or about 1032
operations in the lifetime of the universe

« 2100 js roughly 1030

« So with a bit of luck, we could run (£ib 200) in the
lifetime of the universe ...

« A more precise calculation gives around 1000 hours to
solve (f£ib 100)

« Thatis 1000 6.001 lectures, or 40 semesters, or 20 years of
6.001 or ...

2/15/2007 6.001 SICP 43

An overview of this lecture

« Measuring time requirements (complexity) of a function
« Simplifying the time complexity with asymptotic notation
« Calculating the time complexity for different functions

« Measuring space complexity of a function

2/15/2007 6.001 SICP

Measuring the time complexity of a function

» Suppose nis a parameter that measures the size of a
problem
» For fact and £ib, nis just the procedure’s parameter
* Let t(n) be the amount of time necessary to solve a
problem of size n
» What do we mean by “the amount of time”? How do we
measure “time”?
« Typically, we will define t(n) to be the number of
primitive operations (e.g. the number of additions)
required to solve a problem of size n

2/15/2007 6.001 SICP

An example: factorial
(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

« Define t(n) to be the number of multiplications required by
(fact n)

« By looking at fact, we can see that:
t(0) =0
t(n)=1+tn-1)fornz=1
« In other words: solving (fact n) for any n = 1 requires
one more multiplication than solving (fact (- n 1))

2/15/2007 6.001 SICP

Expanding the recurrence

t0) =0
t(n) = 1 + t(n-1) for n>=1

1{0)=0

(1) =1+10) =1
(2)=1+41)=2
{3)=1+142) =3

In general:

2/15/2007 6.001 SICP 1os

Expanding the recurrence

t0) =0
t(n) = 1 + t(n-1) for n>=1

« How would we prove that t(n) = n for all n?
« Proof by induction (remember from last lecture?):
» Base case: t(n) =nistrue forn=0
* Inductive step: if {(n) = n then it follows that
t(n+1) = n+1
» Hence by induction this is true for all n

2/15/2007 6.001 SICP

A second example: Computing Fibonacci

(define (fib n)
(if (= n 0)
0
(if (= n 1)
1
(+ (fib (- n 1)) (fib (- n 2))))))
Define t(n) to be the number of primitive operations (=, +, -) required by
(fib n)
« By looking at £ib, we can see that:
t0) =1
t1)=2
t(n) =5+ t(n-1) + t(n-2)forn= 2

« In other words: solving (£ib n) for any n = 2 requires 5 more primitive
ops than solving (fib (- n 1)) and solving (fib (- n 2))

2/15/2007 6.001 SICP 123

Looking at the Recurrence

t0) =1
t1)=2
t(n) =5+ t(n-1) + t(n-2)forn= 2

We can see that t(n) = t(n-1) foralln= 2
So, for n2 2, we have

t(n) =5 + t(n-1) + t(n-2)

2 2t(n-2)

Every time nincreases by 2, we more than double the number of
primitive ops that are required
If we iterate the argument, we get

tn) 2 2t(n-2) =2 4t(n-4) 2 8t(n-6) = 16 t(n-8) ...
A little more math shows that

t(n)z2n2

2/15/2007 6.001 SICP .

Different Rates of Growth

« So what does it really mean for things to grow at different rates?

n t(n) =log n tin)=n |tn)=n"2 |tn)=n"3 |t(n)=2n
(logarithmic) | (linear) | (quadratic) | (cubic) (exponential)
1 0 1 1 1 2
10 3.3 10 100 1000 1024
100 6.6 100 10,000 1016 ~10730
1,000 10.0 1,000 1076 1019 ~107300
10,000 13.3 10,000 1079 10712 ~1073,000
100,000 16.68 100,000 10712 10715 ~10730,000
2/15/2007 6.001 SICP

Asymptotic Notation

« Formal definition:

We say t(n) has order of growth @(f(n)) if there are

constants N, k, and k, such that for all n 2 N, we have
k,f(n) < t(n) < k,f(n)

« This is what we call a tight asymptotic bound.

« Examples
t(n)=n has order of growth &(n)
because Tn<t(n)< inforalln=1 (pick N=1, k=1, k,=1)
t(n)=8n has order of growth @&(n)
because 8n<t(n)<8nforalln=1 (pick N=1, k=8, k,=8)
2/15/2007 6.001 SICP

15143

Asymptotic Notation

Formal definition:

We say t(n) has order of growth @(f(n))if there are

constants N, k; and k, such that for all n 2 N, we have
k,f(n) < t(n) < k,f(n)

More examples
t(n)=3n? has order of growth &n?)
because 3n? < t(n) < 3nforallnz 1 (pick N=1, k;=3, k,=3)
t(n)=3n2+5n+3 has order of growth &n?)
because 3n? < t(n) s 4nfforallnz6 (pick N=6, k,=3, k,=4)
or because 3n° < t(n)< 11nfforalln= 1 (pick N=1, k=3, k=11)

2/15/2007 6.001 SICP 163

Theta, Big-O, Little-o

« ©(f(n))is called a tight asymptotic bound because it
squeezes t(n) from above and below:
« O(f(n)) means k,f(n) < t(n) < k,f(n) “theta”
* We can also talk about the upper bound or lower bound
separately
« O(f(n) means t(n) < k,f(n) “big-O”
* Q(f(n)) means k,f(n) < t(n) “omega”
« Sometimes we will abuse notation and use an upper bound
as our approximation
» We should really use “big-O” notation in that case,
saying that t(n) has order of growth O(f(n)), but we are
sometimes sloppy and call this &f(n)) growth.

2/15/2007 6.001 SICP
17143

Motivation

« In many cases, calculating the precise expression for t(n) is
laborious, e.g.:
t(n)=5n" +6n> +8n+7 t(n)=4n’ +18n> +14
« In both of these cases, f(n) has order of growth &(n°)

< Advantages of asymptotic notation
+» In many cases, it's much easier to show that t(n) has a
particular order of growth, e.g., cubic, rather than calculating
a precise expression for t(n)
« Usually, the order of growth is what we really care about:
the most important thing about the above functions is that
they are both cubic (i.e., have order of growth @(n%))

2/15/2007 6.001 SICP 184s

Some common orders of growth

o) Constant

O(log n) Logarithmic growth

O(n) Linear growth

@(nz) Quadratic growth

@(113) Cubic growth

o2") Exponential growth

O(a") Exponential growth for any & > 1

2/15/2007 6.001 SICP Lo

An example: factorial

(define (fact n)
(if (=n 0)
1
(* n (fact (- n 1)))))

« Define t(n) to be the number of multiplications required by (fact n)
» By looking at fact, we can see that:

t(0) =0

t(1) =1 +t(n-1)forn>=1
+ Solving this recurrence gives t(n) = n, so order of growthis @(n)

2/15/2007 6.001 SICP

A general result: linear growth

For any recurrence of the form
t(0)=¢,
t(n)=c,+t(n—1)forn=1

where ¢, is a constant = 0
and c,is a constant > 0
Then we have linear growth, i.e.,
én)
Why?
« If we expand this out, we get
t(n) =c, +nc,
+ And this has order of growth &(n)

2/15/2007 6.001 SICP
2143

Connecting orders of growth to algorithm design

« We want to compute aP, just using multiplication and
addition

* Remember our stages:
« Wishful thinking
« Decomposition
« Smallest sized subproblem

2/15/2007 6.001 SICP o3

Connecting orders of growth to algorithm design

« Wishful thinking
» Assume that the procedure my-expt exists, but only
solves smaller versions of the same problem
« Decompose problem into solving smaller version and using
result
anza.a,..a=a.an-1

(define my-expt
(lambda (a n)
(* a (my-expt a (- n 1)))))

2/15/2007 6.001 SICP
2343

Connecting orders of growth to algorithm design

« Identify smallest size subproblem
e =1

(define my-expt
(lambda (a n)
(if (= n 0)
1
(* a (my-expt a (- n 1))))))

2/15/2007 6.001 SICP P

The order of growth of my-expt

(define my-expt
(lambda (a n)
(if (= n 0)
1
(* a (my-expt a (- n 1))))))

« Define the size of the problem to be n (the second parameter)
« Define t(n) to be the number of primitive operations required
(=%,-)
« By looking at the code, we can see that t(n) has the form:
1(0)=1
t(n)=3+t(n-1)forn=1
« Hence this is also linear

2/15/2007 6.001 SICP 253

Using different processes for the same goal

« Are there other ways to decompose this problem?
« We can take advantage of the following trick:

n
a" =(a-a)?
(define (new-expt a n)
(cond ((=n 0) 1)
((even? n) (new-expt (* a a) (/ n 2)))
(else (* a (new-expt a (- n 1))))))

New special form:
(cond (<predicatel> <con 1t> <con 1t> L)

(<predicate2> <consequent> <consequent> ..)

(else <consequent> <consequent>))

2/15/2007 6.001 SICP

The order of growth of new-expt

(define (new-expt a n)
(cond ((= n 0) 1)
((even? n) (new—expt (* a a) (/ n 2)))
(else (* a (new—-expt a (- n 1))))))

« If nis even, then 1 step reduces to n/2 sized problem
« If nis odd, then 2 steps reduces to n/2 sized problem
« Thus in at most 2k steps, reduces to n/2”k sized problem

* We are done when problem size is just 1, which implies order
of growth in time of
&log n)

2/15/2007 6.001 SICP
27143

The order of growth of new-expt

(define (new-expt a n)
(cond ((=n 0) 1)
((even? n) (new-expt (* a a) (/ n 2)))
(else (* a (new-expt a (- n 1))))))

t(n) has the following form:
10)=1
t(n)=4+1(n/2)if niseven
t(n)=4+t(n—1)if nisodd
It follows that
t(n) =8+1t((n—1)/2)if nisodd

2/15/2007 6.001 SICP 2843

A general result: logarithmic growth

For any recurrence of the form
1(0)=¢
t(n)=c,+t(n/2)forn=>1

where ¢, is a constant =2 0

and c,is a constant > 0
Then we have logarithmic growth, i.e.,

&log n)

« Intuition: at each step we halve the size of the problem

« We can only halve n around log n times before we reach
the base case (e.g. n=1or n=0)

2/15/2007 6.001 SICP
29043

Different Rates of Growth

« Note why this makes a difference

n t(n)=logn |[t#(n)=n |i(n)=n*2 |t(n)=n"3 | t(n)=2n
(logarithmic) |(linear) | (quadratic) | (cubic) P ial)
1 0 1 1 1 2
10 3.3 10 100 1000 1024
100 6.6 100 10,000 1076 1.3 x 10730
1,000 10.0 1,000 1076 1079 1.1 x 107300
10,000 13.3 10,000 1019 10712 -
100,000 16.68 100,000 10712 10715 -

2/15/2007 6.001 SICP 013

Back to Fibonacci
(define fib
(lambda (n)
(cond ((= n 0) 0)
((=n1) 1)
(else (+ (fib (- n 1))
(fib (- n 2)))))))
« If t(n) is defined as the number of primitive operations (=, +, -), then
1(0)=1
(=2
t(n)=5+t(n—1)+t(n—2)for n>2
« And for n > 2we have
t(n) = 2t(n—2)

6.001 SICP

2/15/2007

3143

Why is our version of £ib so inefficient?
(define fib
(lambda (n)
(cond ((= n 0) 0)
((=n1) 1)
(else (+ (fib (- n 1))
(£ib (- n 2)))))))

« When computing (£ib 6), the recursion computes (£ib 5) and
(fib 4)

« The computation of (£ib 5)then involves computing (£ib 4) and

(£ib 3). Atthis point (£ib 4) has been computed twice. Isn’t this
wasteful?

2/15/2007

6.001 SICP

33/43

Another general result: exponential growth
« If we can show:
1(0)=¢,

t(n)2c,+ar(n—pf)forn=1
with constants ¢, 20, ¢, > 0,
and constant a > 1
and constant £ 1

Then we have exponential growth, i.e.,

Q(c"B)

« Intuition: Every time we add £ to the problem size n, the amount of
computation required is multiplied by a factor of a.

2/15/2007 6.001 SICP

Why is our version of £ib so inefficient?

* Let's draw the computation tree: the subproblems that
each (fib n) needs to call

« We'll use the notation
/ 5\
4 3
...to signify that computing (£ib 5) involves recursive

callsto (£ib 4) and (£ib 3)

2/15/2007

6.001 SICP
34/43

The computation tree for (£ib 7)

N
n
n

N A A

2 2 2 1 21

« There’s a lot of repeated computation here: e.g., (£ib 3)is
recomputed 5 times
2/15/2007 6.001 SICP

35043

An efficient implementation of Fibonacci
(define (ifib n) (fib-iter 0 1 0 n))
(define (fib-iter i a b n)

(if (= i n)
b

(fib-iter (+ i 1) (+ a b) a n)))

« Recurrence (measured in number of primitive operations):
1(0)=1
t(n)=3+t(n—1)forn>1

« Order of growth is

O(n)

2/15/2007 6.001 SICP

36/43

ifib is now linear

« If you trace the function, you will see that we avoid
repeated computations. We've gone from exponential
growth to linear growth!

(ifib 5)

(fib-iter 0 1 0 5)
(fib-iter 1 1 1 5)
(fib-iter 2 2 1 5)
(fib-iter 3 3 2 5)
(fib-iter 4 5 3 5)
(fib-iter 5 8 5 5)
5

2/15/2007 6.001 SICP

a7ia3

How much space (memory) does a procedure require?

« So far, we have considered the order of growth of #(n) for
various procedures. T(n) is the time for the procedure to
run, when given an input of size n.

» Now, let’s define s(n) to be the space or memory
requirements of a procedure when the problem size is n.
What is the order of growth of s(n)?

* Note that for now we will measure space requirements in
terms of the maximum number of pending operations.

2/15/2007 6.001 SICP

Tracing factorial

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))
« Atrace of fact shows that it leads to a recursive process, with
pending operations.
(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (*x 2 (¥ 1 (fact 0)))))
(* 4 (*3 (*2 (*x11))))
(* 4 (* 3 (*21)))
24

2/15/2007 6.001 SICP
39/43

Tracing factorial

« In general, running (fact n) leads to npending operations
« Each pending operation takes a constant amount of memory

« In this case, s(n) has order of growth that is linear in space:

0(n)

2/15/2007 6.001 SICP e

A contrast: iterative factorial

(define (ifact n) (ifact-helper 1 1 n))

(define (ifact-helper product i n)
(if (> i n)

product
(ifact-helper (* product i)
(+ 1 1)
n)))
2/15/2007 6.001 SICP

a3

A contrast: iterative factorial

* Atrace of (ifact 4):
(ifact 4)
(ifact-helper 1 1 4)
(ifact-helper 1 2 4)
(ifact-helper 2 3 4)
(ifact-helper 6 4 4)
(ifact-helper 24 5 4)
24

+ (ifact n)has no pending operations, so s(n) has an order of growth
that is constant o)

« lts time complexity t(n) is @(n)
* Incontrast, (fact n) has linear growth in both space and time G)(n)
« In general, iterative processes often have a lower order of growth for

s(n) than recursive processes

2/15/2007 6.001 SICP e

Summary

« We've described how to calculate t(n), the time complexity of a
procedure as a function of the size of its input

« We've introduced asymptotic notation for orders of growth

< There is a huge difference between exponential order of growth and
non-exponential growth, e.g., if your procedure has

1(n) =O(2")

You will not be able to run it for large values of n.

« We've given examples of procedures with linear, logarithmic, and
exponential growth for t(n). Main point: you should be able to work out
the order of growth of t(n) for simple procedures in Scheme

« The space requirements s(n) for a procedure depend on the number of
pending operations. lterative processes tend to have fewer pending
operations than their corresponding recursive processes.

2/15/2007 6.001 SICP 433

2/15/2007 6.001 SICP

Towers of Hanoi

« Three posts, and a set of different size disks

« Any stack must be sorted in decreasing order from bottom
to top

« The goal is to move the disks one at a time, while
preserving these conditions, until the entire stack has
moved from one post to another

2/15/2007 6.001 SICP
45043

Towers of Hanoi

(define move-tower
(lambda (size from to extra)
(cond ((= size 0) true)
(else (move-tower (- size 1) from extra to)
(print-move from to)
(move-tower (- size 1) extra to from)))))

(define print-move
(lambda (from to)
(display " ‘Move top disk from ')
(display from)
(display " to V)
(display to)
(newline)))

2/15/2007 6.001 SICP pron

A tree recursion

Move 4.

Move 3 Move 3

N 7N

Move 2 Move 2 Move 2 Move 2

/NN SN SN

Move 1 Move 1 Move 1 Move 1
Move 1 Move 1 Move 1 Move 1

2/15/2007 6.001 SICP
47143

Orders of growth for towers of Hanoi

» What is the order of growth in time for towers of Hanoi?
» What is the order of growth in space for towers of Hanoi?

2/15/2007 6.001 SICP s

Another example of different processes

» Suppose we want to compute the elements of Pascal’s
triangle

11
12 1
Bis
11
151005 1
16152015 6 1

2/15/2007 6.001 SICP

49/43

Pascal’s triangle

» We need some notation
« Let's order the rows, starting with n=0 for the first row
« The nth row then has n+1 elements
« Let's use P(j,n) to denote the jth element of the nth row.

» We want to find ways to compute P(j,n) for any n, and
any j, suchthat0 <=j<=n

2/15/2007 6.001 SICP

Pascal’s triangle the traditional way

« Traditionally, one thinks of Pascal’s triangle being formed
by the following informal method:

* The first element of a row is 1
* The last element of a row is 1

» To get the second element of a row, add the first and
second element of the previous row

» To get the k'th element of a row, and the (k-1)’st and
k’'th element of the previous row

2/15/2007 6.001 SICP

Pascal’s triangle the traditional way

» Here is a procedure that just captures that idea:

(define pascal
(lambda (j n)
(cond ((= j 0) 1)
((=3n) 1)
(else (+ (pascal (- j 1) (-n 1)
(pascal j (- n 1)))))))

2/15/2007 6.001 SICP

52/43

Pascal’s triangle the traditional way

(define pascal
(lambda (j n)
(cond ((= 3 0) 1)

((=3n) 1)
(else (+ (pascal (- j 1) (- n 1)
(pascal j (- n 1)))))))

« What kind of process does this generate?
* Looks a lot like fibonacci

» There are two recursive calls to the procedure in the
general case

« In fact, this has a time complexity that is exponential
and a space complexity that is linear

2/15/2007 6.001 SICP

Solving the same problem a different way
» Can we do better?
* Yes, but we need to do some thinking.

« Pascal’s triangle actually captures the idea of how many
different ways there are of choosing objects from a set,
where the order of choice doesn’t matter.

« P(0, n) is the number of ways of choosing collections of
no objects, which is trivially 1.

« P(n, n) is the number of ways of choosing collections of

n objects, which is obviously 1, since there is only one
set of n things.

« P(j, n) is the number of ways of picking sets of j objects
from a set of n objects.

2/15/2007 6.001 SICP

54/43

Solving the same problem a different way

* So what is the number of ways of picking sets of j objects
from a set of n objects?
* Pick the first one — there are n possible choices
» Then pick the second one — there are (n-1) choices left.
+ Keep going until you have picked j objects
nn—=1)..(n—j+1) =L
(n—j)!
« But the order in which we pick the objects doesn’t
matter, and there are j! different orders, so we have

n! :n(n—l)...(n—j+l)
(=Pt =Dl

2/15/2007 6.001 SICP s5/4

Solving the same problem a different way

» So here is an easy way to implement this idea:
(define pascal
(lambda (j n)
(/ (fact n)
(* (fact (- n j)) (fact 3j)))))

» What is complexity of this approach?
« Three different evaluations of fact
« Each is linear in time and in space
« So combination takes 3n steps, which is also linear in
time; and has at most n deferred operations, which is
also linear in space

2/15/2007 6.001 SICP
56/43

Solving the same problem a different way

« What about computing with a different version of fact?
(define pascal
(lambda (j n)
(/ (ifact n)
(* (ifact (- n j)) (ifact 3J)))))

« What is complexity of this approach?

« Three different evaluations of fact

» Each is linear in time and constant in space

» So combination takes 3n steps, which is also linear in
time; and has no deferred operations, which is also
constant in space

2/15/2007 6.001 SICP
57143

Solving the same problem the direct way

n! _nmn=D..(n=j+1)

=it =11
« Now, why not just do the computation directly?

(define pascal
(lambda (j n)
(/ (helpnl (+ n (- 3j) 1))
(help j 1 1))))
(define help
(lambda (k prod end)
(if (= k end)
(* k prod)
(help (- k 1) (* prod k) end))))

2/15/2007 6.001 SICP saua

Solving the same problem the direct way

« So what is complexity here?

* Help is an iterative procedure, and has constant space
and linear time

« This version of Pascal only uses two versions of help
(as opposed the previous version that used three
versions of ifact).

« In practice, this means this version uses fewer
multiplies that the previous one, but it is still linear in
time, and hence has the same order of growth.

2/15/2007 6.001 SICP
59143

So why do these orders of growth matter?

» Main concern is general order of growth
« Exponential is very expensive as the problem size
grows.
« Some clever thinking can sometimes convert an
inefficient approach into a more efficient one.
« In practice, actual performance may improve by
considering different variations, even though the overall
order of growth stays the same.

2/15/2007 6.001 SICP 03

10

