
1

6.001 SICP
1/43

2/15/2007

Today’s topics

• Orders of growth of processes

• Relating types of procedures to different orders of growth

6.001 SICP
2/43

2/15/2007

Computing factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

• We can run this for various values of n:

(fact 10)

(fact 100)

(fact 1000)

(fact 10000)

• Takes longer to run as n gets larger, but still manageable for large n

(e.g. n = 10000 – takes about 13 seconds of “real time” in DrScheme;

while n = 1000 – takes about 0.2 seconds of “real time”)

6.001 SICP
3/43

2/15/2007

Fibonacci numbers

The Fibonacci numbers are described by the following equations:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n-2) + fib(n-1) for n ≥ 2

Expanding this sequence, we get

fib(0) = 0

fib(1) = 1

fib(2) = 1

fib(3) = 2

fib(4) = 3

fib(5) = 5

fib(6) = 8

fib(7) = 13

...

6.001 SICP
4/43

2/15/2007

A contrast to (fact n): computing Fibonacci

(define (fib n)

(if (= n 0)

0

(if (= n 1)

1

(+ (fib (- n 1)) (fib (- n 2))))))

• We can run this for various values of n:

(fib 10)

(fib 20)

(fib 100)

(fib 1000)

• These take much longer to run as n gets larger

6.001 SICP
5/43

2/15/2007

A contrast: computing Fibonacci

(define (fib n)

(if (= n 0)

0

(if (= n 1)

1

(+ (fib (- n 1)) (fib (- n 2))))))

• Later we’ll see that when calculating (fib n), we need
more than 2n/2 addition operations

(fib 100) uses + at least 250 times

(fib 2000) uses + at least 21000 times

= 1,125,899,906,842,624

=10,715,086,071,862,673,209,484,250,490,600,018,105,614,048,117,055,336,074,437,

503,883,703,510,511,249,361,224,931,983,788,156,958,581,275,946,729,175,531,468,
251,871,452,856,923,140,435,984,577,574,698,574,803,934,567,774,824,230,985,421,

074,605,062,371,141,877,954,182,153,046,474,983,581,941,267,398,767,559,165,543,
946,077,062,914,571,196,477,686,542,167,660,429,831,652,624,386,837,205,668,069,

376

6.001 SICP
6/43

2/15/2007

Computing Fibonacci: putting it in context

• A rough estimate: the universe is approximately 1010 years

= 3x1017 seconds old

• Fastest computer around (not your laptop) can do about

280x1012 arithmetic operations a second, or about 1032

operations in the lifetime of the universe

• 2100 is roughly 1030

• So with a bit of luck, we could run (fib 200) in the

lifetime of the universe …

• A more precise calculation gives around 1000 hours to
solve (fib 100)

• That is 1000 6.001 lectures, or 40 semesters, or 20 years of

6.001 or …

2

6.001 SICP
7/43

2/15/2007

An overview of this lecture

• Measuring time requirements (complexity) of a function

• Simplifying the time complexity with asymptotic notation

• Calculating the time complexity for different functions

• Measuring space complexity of a function

6.001 SICP
8/43

2/15/2007

Measuring the time complexity of a function

• Suppose n is a parameter that measures the size of a

problem

• For fact and fib, n is just the procedure’s parameter

• Let t(n) be the amount of time necessary to solve a

problem of size n

• What do we mean by “the amount of time”? How do we

measure “time”?

• Typically, we will define t(n) to be the number of
primitive operations (e.g. the number of additions)

required to solve a problem of size n

6.001 SICP
9/43

2/15/2007

An example: factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

• Define t(n) to be the number of multiplications required by
(fact n)

• By looking at fact, we can see that:

t(0) = 0

t(n) = 1 + t(n-1) for n ≥ 1

• In other words: solving (fact n) for any n ≥ 1 requires
one more multiplication than solving (fact (- n 1))

6.001 SICP
10/43

2/15/2007

Expanding the recurrence

t(0) = 0

t(n) = 1 + t(n-1) for n>=1

t(0) = 0

t(1) = 1 + t(0) = 1

t(2) = 1 + t(1) = 2

t(3) = 1 + t(2) = 3

…

In general:

t(n) = n

6.001 SICP
11/43

2/15/2007

Expanding the recurrence

t(0) = 0

t(n) = 1 + t(n-1) for n>=1

• How would we prove that t(n) = n for all n?

• Proof by induction (remember from last lecture?):

• Base case: t(n) = n is true for n = 0

• Inductive step: if t(n) = n then it follows that

t(n+1) = n+1

• Hence by induction this is true for all n

6.001 SICP
12/43

2/15/2007

A second example: Computing Fibonacci

(define (fib n)

(if (= n 0)

0

(if (= n 1)

1

(+ (fib (- n 1)) (fib (- n 2))))))

• Define t(n) to be the number of primitive operations (=,+,-) required by

(fib n)

• By looking at fib, we can see that:

t(0) = 1

t(1) = 2

t(n) = 5 + t(n-1) + t(n-2) for n ≥ 2

• In other words: solving (fib n) for any n ≥ 2 requires 5 more primitive

ops than solving (fib (- n 1)) and solving (fib (- n 2))

3

6.001 SICP
13/43

2/15/2007

Looking at the Recurrence

t(0) = 1

t(1) = 2

t(n) = 5 + t(n-1) + t(n-2) for n ≥ 2

• We can see that t(n) ≥ t(n-1) for all n ≥ 2

• So, for n ≥ 2, we have

t(n) = 5 + t(n-1) + t(n-2)

≥ 2 t(n-2)

• Every time n increases by 2, we more than double the number of
primitive ops that are required

• If we iterate the argument, we get

t(n) ≥ 2 t(n-2) ≥ 4 t(n-4) ≥ 8 t(n-6) ≥ 16 t(n-8) …

• A little more math shows that

t(n) ≥ 2 n/2

6.001 SICP
14/43

2/15/2007

Different Rates of Growth

• So what does it really mean for things to grow at different rates?

2

1024

~10^30

~10^300

~10^3,000

~10^30,000

1

1000

10^6

10^9

10^12

10^15

1

100

10,000

10^6

10^9

10^12

1

10

100

1,000

10,000

100,000

0

3.3

6.6

10.0

13.3

16.68

1

10

100

1,000

10,000

100,000

t(n) = 2^n

(exponential)

t(n) = n^3

(cubic)

t(n) = n^2

(quadratic)

t(n) = n

(linear)

t(n) = log n

(logarithmic)

n

6.001 SICP
15/43

2/15/2007

Asymptotic Notation

• Formal definition:

We say t(n) has order of growth ΘΘΘΘ(f(n)) if there are
constants N, k1 and k2 such that for all n ≥ N, we have

k1f(n) ≤ t(n) ≤ k2f(n)

• This is what we call a tight asymptotic bound.

• Examples

t(n)=n has order of growth ΘΘΘΘ(n)

because 1n ≤ t(n) ≤ 1n for all n ≥ 1 (pick N=1, k1=1, k2=1)

t(n)=8n has order of growth ΘΘΘΘ(n)
because 8n ≤ t(n) ≤ 8n for all n ≥ 1 (pick N=1, k1=8, k2=8)

6.001 SICP
16/43

2/15/2007

Asymptotic Notation

• Formal definition:

We say t(n) has order of growth ΘΘΘΘ(f(n)) if there are
constants N, k1 and k2 such that for all n ≥ N, we have

k1f(n) ≤ t(n) ≤ k2f(n)

• More examples

t(n)=3n2 has order of growth ΘΘΘΘ(n2)
because 3n2

≤ t(n) ≤ 3n2 for all n ≥ 1 (pick N=1, k1=3, k2=3)

t(n)=3n2+5n+3 has order of growth ΘΘΘΘ(n2)

because 3n2
≤ t(n) ≤ 4n2 for all n ≥ 6 (pick N=6, k1=3, k2=4)

or because 3n2
≤ t(n) ≤ 11n2 for all n ≥ 1 (pick N=1, k1=3, k2=11)

6.001 SICP
17/43

2/15/2007

Theta, Big-O, Little-o

• Θ(f(n)) is called a tight asymptotic bound because it
squeezes t(n) from above and below:

• ΘΘΘΘ(f(n)) means k1f(n) ≤ t(n) ≤ k2f(n) “theta”

• We can also talk about the upper bound or lower bound

separately

• O(f(n) means t(n) ≤ k2f(n) “big-O”

• Ω(f(n)) means k1f(n) ≤ t(n) “omega”

• Sometimes we will abuse notation and use an upper bound

as our approximation

• We should really use “big-O” notation in that case,

saying that t(n) has order of growth ΟΟΟΟ(f(n)), but we are

sometimes sloppy and call this ΘΘΘΘ(f(n)) growth.

6.001 SICP
18/43

2/15/2007

Motivation

• In many cases, calculating the precise expression for t(n) is

laborious, e.g.:

• In both of these cases, t(n) has order of growth Θ(n3)

• Advantages of asymptotic notation

• In many cases, it’s much easier to show that t(n) has a

particular order of growth, e.g., cubic, rather than calculating

a precise expression for t(n)

• Usually, the order of growth is what we really care about:
the most important thing about the above functions is that

they are both cubic (i.e., have order of growth Θ(n3))

7865)(23 +++= nnnnt 14184)(
23 ++= nnnt

4

6.001 SICP
19/43

2/15/2007

Some common orders of growth

)(nΘ

)(log nΘ

)(2
nΘ

)(3
nΘ

)2(n
Θ

)(n
Θ α

Constant

Logarithmic growth

Linear growth

Quadratic growth

Cubic growth

Exponential growth

Exponential growth for any 1>α

)1(Θ

6.001 SICP
20/43

2/15/2007

An example: factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

• Define t(n) to be the number of multiplications required by (fact n)

• By looking at fact, we can see that:

t(0) = 0

t(1) = 1 + t(n-1) for n >= 1

• Solving this recurrence gives t(n) = n, so order of growth is)(nΘ

6.001 SICP
21/43

2/15/2007

A general result: linear growth

For any recurrence of the form

where c1 is a constant ≥ 0

and c2 is a constant > 0

Then we have linear growth, i.e.,

ΘΘΘΘ(n)
Why?

• If we expand this out, we get

• And this has order of growth Θ(n)

 1for)1()(

)0(

2

1

≥−+=

=

nntcnt

ct

21)(nccnt +=

6.001 SICP
22/43

2/15/2007

Connecting orders of growth to algorithm design

• We want to compute ab, just using multiplication and

addition

• Remember our stages:

• Wishful thinking

• Decomposition

• Smallest sized subproblem

6.001 SICP
23/43

2/15/2007

Connecting orders of growth to algorithm design

• Wishful thinking

• Assume that the procedure my-expt exists, but only

solves smaller versions of the same problem

• Decompose problem into solving smaller version and using

result

an = a ⋅ a ⋅⋅⋅ a = a ⋅ an-1

(define my-expt

(lambda (a n)

(* a (my-expt a (- n 1)))))

6.001 SICP
24/43

2/15/2007

Connecting orders of growth to algorithm design

• Identify smallest size subproblem

• a0 = 1

(define my-expt

(lambda (a n)

(if (= n 0)

1

(* a (my-expt a (- n 1))))))

5

6.001 SICP
25/43

2/15/2007

The order of growth of my-expt

(define my-expt

(lambda (a n)

(if (= n 0)

1

(* a (my-expt a (- n 1))))))

• Define the size of the problem to be n (the second parameter)

• Define t(n) to be the number of primitive operations required
(=,*,-)

• By looking at the code, we can see that t(n) has the form:

• Hence this is also linear

1for)1(3)(

1)0(

≥−+=

=

nntnt

t

6.001 SICP
26/43

2/15/2007

Using different processes for the same goal

• Are there other ways to decompose this problem?

• We can take advantage of the following trick:

(define (new-expt a n)

(cond ((= n 0) 1)

((even? n) (new-expt (* a a) (/ n 2)))

(else (* a (new-expt a (- n 1))))))

New special form:

(cond (<predicate1> <consequent> <consequent> …)

(<predicate2> <consequent> <consequent> …)

…

(else <consequent> <consequent>))

2)(
n

n
aaa ⋅=

6.001 SICP
27/43

2/15/2007

The order of growth of new-expt

(define (new-expt a n)

(cond ((= n 0) 1)

((even? n) (new-expt (* a a) (/ n 2)))

(else (* a (new-expt a (- n 1))))))

• If n is even, then 1 step reduces to n/2 sized problem

• If n is odd, then 2 steps reduces to n/2 sized problem

• Thus in at most 2k steps, reduces to n/2^k sized problem

• We are done when problem size is just 1, which implies order

of growth in time of

ΘΘΘΘ(log n)

6.001 SICP
28/43

2/15/2007

The order of growth of new-expt

(define (new-expt a n)

(cond ((= n 0) 1)

((even? n) (new-expt (* a a) (/ n 2)))

(else (* a (new-expt a (- n 1))))))

• t(n) has the following form:

• It follows that

odd isif)1(4)(

even isif)2/(4)(

1)0(

nntnt

nntnt

t

−+=

+=

=

odd is if)2/)1((8)(nntnt −+=

6.001 SICP
29/43

2/15/2007

A general result: logarithmic growth

For any recurrence of the form

where c1 is a constant ≥ 0

and c2 is a constant > 0

Then we have logarithmic growth, i.e.,

ΘΘΘΘ(log n)

• Intuition: at each step we halve the size of the problem

• We can only halve n around log n times before we reach
the base case (e.g. n=1 or n=0)

 1for)2/()(

)0(

2

1

≥+=

=

nntcnt

ct

6.001 SICP
30/43

2/15/2007

Different Rates of Growth

• Note why this makes a difference

2

1024

1.3 x 10^30

1.1 x 10^300

1

1000

10^6

10^9

10^12

10^15

1

100

10,000

10^6

10^9

10^12

1

10

100

1,000

10,000

100,000

0

3.3

6.6

10.0

13.3

16.68

1

10

100

1,000

10,000

100,000

t(n) = 2^n

(exponential)

t(n) = n^3

(cubic)

t(n) = n^2

(quadratic)

t(n) = n

(linear)

t(n) = log n

(logarithmic)

n

6

6.001 SICP
31/43

2/15/2007

Back to Fibonacci

(define fib

(lambda (n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1))

(fib (- n 2)))))))

• If t(n) is defined as the number of primitive operations (=,+,-), then:

• And for n ≥ 2 we have

2for)2()1(5)(

2)1(

1)0(

≥−+−+=

=

=

nntntnt

t

t

)2(2)(−≥ ntnt
6.001 SICP

32/43
2/15/2007

Another general result: exponential growth

• If we can show:

with constants c1 ≥ 0, c2 > 0,

and constant α > 1

and constant β ≥ 1

Then we have exponential growth, i.e.,

Ω(αn/β)

• Intuition: Every time we add β to the problem size n, the amount of

computation required is multiplied by a factor of α.

 1for)()(

)0(

2

1

≥−+≥

=

nntcnt

ct

βα

6.001 SICP
33/43

2/15/2007

Why is our version of fib so inefficient?

(define fib

(lambda (n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1))

(fib (- n 2)))))))

• When computing (fib 6), the recursion computes (fib 5) and

(fib 4)

• The computation of (fib 5)then involves computing (fib 4) and

(fib 3). At this point (fib 4) has been computed twice. Isn’t this

wasteful?

6.001 SICP
34/43

2/15/2007

Why is our version of fib so inefficient?

• Let’s draw the computation tree: the subproblems that

each (fib n) needs to call

• We’ll use the notation

…to signify that computing (fib 5) involves recursive

calls to (fib 4) and (fib 3)

5

4 3

6.001 SICP
35/43

2/15/2007

The computation tree for (fib 7)

7

6 5

5 4 4 3

4 3 3 2 3 2 2 1

3 2 2 1 2 1 2 1

2 1

• There’s a lot of repeated computation here: e.g., (fib 3)is

recomputed 5 times

6.001 SICP
36/43

2/15/2007

An efficient implementation of Fibonacci

(define (ifib n) (fib-iter 0 1 0 n))

(define (fib-iter i a b n)

(if (= i n)

b

(fib-iter (+ i 1) (+ a b) a n)))

• Recurrence (measured in number of primitive operations):

• Order of growth is

)(nΘ

1for)1(3)(

1)0(

≥−+=

=

nntnt

t

7

6.001 SICP
37/43

2/15/2007

ifib is now linear

• If you trace the function, you will see that we avoid
repeated computations. We’ve gone from exponential
growth to linear growth!

(ifib 5)

(fib-iter 0 1 0 5)

(fib-iter 1 1 1 5)

(fib-iter 2 2 1 5)

(fib-iter 3 3 2 5)

(fib-iter 4 5 3 5)

(fib-iter 5 8 5 5)

5

6.001 SICP
38/43

2/15/2007

How much space (memory) does a procedure require?

• So far, we have considered the order of growth of t(n) for

various procedures. T(n) is the time for the procedure to

run, when given an input of size n.

• Now, let’s define s(n) to be the space or memory
requirements of a procedure when the problem size is n.

What is the order of growth of s(n)?

• Note that for now we will measure space requirements in

terms of the maximum number of pending operations.

6.001 SICP
39/43

2/15/2007

Tracing factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

• A trace of fact shows that it leads to a recursive process, with
pending operations.

(fact 4)

(* 4 (fact 3))

(* 4 (* 3 (fact 2)))

(* 4 (* 3 (* 2 (fact 1))))

(* 4 (* 3 (* 2 (* 1 (fact 0)))))

(* 4 (* 3 (* 2 (* 1 1))))

(* 4 (* 3 (* 2 1)))

…

24

6.001 SICP
40/43

2/15/2007

Tracing factorial

• In general, running (fact n) leads to n pending operations

• Each pending operation takes a constant amount of memory

• In this case, s(n) has order of growth that is linear in space:

)(nΘ

6.001 SICP
41/43

2/15/2007

A contrast: iterative factorial

(define (ifact n) (ifact-helper 1 1 n))

(define (ifact-helper product i n)

(if (> i n)

product

(ifact-helper (* product i)

(+ i 1)

n)))

6.001 SICP
42/43

2/15/2007

A contrast: iterative factorial
• A trace of (ifact 4):

(ifact 4)

(ifact-helper 1 1 4)

(ifact-helper 1 2 4)

(ifact-helper 2 3 4)

(ifact-helper 6 4 4)

(ifact-helper 24 5 4)

24

• (ifact n)has no pending operations, so s(n) has an order of growth

that is constant

• Its time complexity t(n) is

• In contrast, (fact n) has linear growth in both space and time

• In general, iterative processes often have a lower order of growth for
s(n) than recursive processes

)1(Θ

)(nΘ
)(nΘ

8

6.001 SICP
43/43

2/15/2007

Summary

• We’ve described how to calculate t(n), the time complexity of a

procedure as a function of the size of its input

• We’ve introduced asymptotic notation for orders of growth

• There is a huge difference between exponential order of growth and

non-exponential growth, e.g., if your procedure has

You will not be able to run it for large values of n.

• We’ve given examples of procedures with linear, logarithmic, and

exponential growth for t(n). Main point: you should be able to work out

the order of growth of t(n) for simple procedures in Scheme

• The space requirements s(n) for a procedure depend on the number of

pending operations. Iterative processes tend to have fewer pending

operations than their corresponding recursive processes.

)2()(
n

nt Θ=

6.001 SICP
44/43

2/15/2007

6.001 SICP
45/43

2/15/2007

Towers of Hanoi

• Three posts, and a set of different size disks

• Any stack must be sorted in decreasing order from bottom

to top

• The goal is to move the disks one at a time, while

preserving these conditions, until the entire stack has

moved from one post to another

6.001 SICP
46/43

2/15/2007

Towers of Hanoi

(define move-tower

(lambda (size from to extra)

(cond ((= size 0) true)

(else (move-tower (- size 1) from extra to)

(print-move from to)

(move-tower (- size 1) extra to from)))))

(define print-move

(lambda (from to)

(display ``Move top disk from ``)

(display from)

(display `` to ``)

(display to)

(newline)))

6.001 SICP
47/43

2/15/2007

A tree recursion

Move 4

Move 3 Move 3

Move 2Move 2Move 2Move 2

Move 1

Move 1

Move 1

Move 1

Move 1

Move 1

Move 1

Move 1

6.001 SICP
48/43

2/15/2007

Orders of growth for towers of Hanoi

• What is the order of growth in time for towers of Hanoi?

• What is the order of growth in space for towers of Hanoi?

9

6.001 SICP
49/43

2/15/2007

Another example of different processes

• Suppose we want to compute the elements of Pascal’s

triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

6.001 SICP
50/43

2/15/2007

Pascal’s triangle

• We need some notation

• Let’s order the rows, starting with n=0 for the first row

• The nth row then has n+1 elements

• Let’s use P(j,n) to denote the jth element of the nth row.

• We want to find ways to compute P(j,n) for any n, and

any j, such that 0 <= j <= n

6.001 SICP
51/43

2/15/2007

Pascal’s triangle the traditional way

• Traditionally, one thinks of Pascal’s triangle being formed

by the following informal method:

• The first element of a row is 1

• The last element of a row is 1

• To get the second element of a row, add the first and

second element of the previous row

• To get the k’th element of a row, and the (k-1)’st and

k’th element of the previous row

6.001 SICP
52/43

2/15/2007

Pascal’s triangle the traditional way

• Here is a procedure that just captures that idea:

(define pascal

(lambda (j n)

(cond ((= j 0) 1)

((= j n) 1)

(else (+ (pascal (- j 1) (- n 1)

(pascal j (- n 1)))))))

6.001 SICP
53/43

2/15/2007

Pascal’s triangle the traditional way

• What kind of process does this generate?

• Looks a lot like fibonacci

• There are two recursive calls to the procedure in the

general case

• In fact, this has a time complexity that is exponential

and a space complexity that is linear

(define pascal

(lambda (j n)

(cond ((= j 0) 1)

((= j n) 1)

(else (+ (pascal (- j 1) (- n 1)

(pascal j (- n 1)))))))

6.001 SICP
54/43

2/15/2007

Solving the same problem a different way

• Can we do better?

• Yes, but we need to do some thinking.

• Pascal’s triangle actually captures the idea of how many

different ways there are of choosing objects from a set,

where the order of choice doesn’t matter.

• P(0, n) is the number of ways of choosing collections of

no objects, which is trivially 1.

• P(n, n) is the number of ways of choosing collections of

n objects, which is obviously 1, since there is only one

set of n things.

• P(j, n) is the number of ways of picking sets of j objects

from a set of n objects.

10

6.001 SICP
55/43

2/15/2007

Solving the same problem a different way

• So what is the number of ways of picking sets of j objects

from a set of n objects?

• Pick the first one – there are n possible choices

• Then pick the second one – there are (n-1) choices left.

• Keep going until you have picked j objects

• But the order in which we pick the objects doesn’t

matter, and there are j! different orders, so we have

)!(

!
)1)...(1(

jn

n
jnnn

−
=+−−

1)....1(

)1)...(1(

!)!(

!

−

+−−
=

− jj

jnnn

jjn

n

6.001 SICP
56/43

2/15/2007

Solving the same problem a different way

• So here is an easy way to implement this idea:

(define pascal

(lambda (j n)

(/ (fact n)

(* (fact (- n j)) (fact j)))))

• What is complexity of this approach?

• Three different evaluations of fact

• Each is linear in time and in space

• So combination takes 3n steps, which is also linear in
time; and has at most n deferred operations, which is
also linear in space

6.001 SICP
57/43

2/15/2007

Solving the same problem a different way

• What about computing with a different version of fact?

(define pascal

(lambda (j n)

(/ (ifact n)

(* (ifact (- n j)) (ifact j)))))

• What is complexity of this approach?

• Three different evaluations of fact

• Each is linear in time and constant in space

• So combination takes 3n steps, which is also linear in

time; and has no deferred operations, which is also
constant in space

6.001 SICP
58/43

2/15/2007

Solving the same problem the direct way

• Now, why not just do the computation directly?

(define pascal

(lambda (j n)

(/ (help n 1 (+ n (- j) 1))

(help j 1 1))))

(define help

(lambda (k prod end)

(if (= k end)

(* k prod)

(help (- k 1) (* prod k) end))))

1)....1(

)1)...(1(

!)!(

!

−

+−−
=

− jj

jnnn

jjn

n

6.001 SICP
59/43

2/15/2007

Solving the same problem the direct way

• So what is complexity here?

• Help is an iterative procedure, and has constant space

and linear time

• This version of Pascal only uses two versions of help

(as opposed the previous version that used three

versions of ifact).

• In practice, this means this version uses fewer

multiplies that the previous one, but it is still linear in

time, and hence has the same order of growth.

6.001 SICP
60/43

2/15/2007

So why do these orders of growth matter?

• Main concern is general order of growth

• Exponential is very expensive as the problem size

grows.

• Some clever thinking can sometimes convert an

inefficient approach into a more efficient one.

• In practice, actual performance may improve by

considering different variations, even though the overall

order of growth stays the same.

