This Lecture

* Substitution model

» An example using the substitution model
+ Designing recursive procedures

« Designing iterative procedures

« Proving that our code works

132

Substitution model

* A way to figure out what happens during evaluation
* Not really what happens in the computer

Rules of substitution model:
If self-evaluating (e.g. number, string, #t / #f), just return value
If name, replace it with value associated with that name
If lambda, create a procedure
If special form (e.g. if), follow the special form’s rules for evaluating
If combination (e, e, e, ... e):
« Evaluate subexpressions e, in any order to produce values

(Vo VyVp.on V)
« Ifv,is primitive procedure (e.g. +), just apply itto v, ... v
* Ifv,is compound procedure (created by lambda):

— Substitute v, ... v, for corresponding parameters in body of
procedure, then repeat on body

SAEE I

n

2/32

Micro Quiz

(define average (lambda (x y)(/ (+ x y) 2)))
(average (+ 3 4) 3)
(5)

Rules of substitution model
If self-evaluating (e.g. number, string, #t / #f), just return value
If name, replace it with value associated with that name
If lambda, create a procedure
If special form (e.g. if), follow the special form’s rules for evaluating
If combination (e;e; e, ... e):
« Evaluate subexpressions e, in any order to produce values
(Vo V4V - V)
« Ifv,is primitive procedure (e.g. +), just apply itto v, ... v,
« If vy is compound procedure (created by lambda):

— Substitute v, ... v, for corresponding parameters in body of
procedure, then repeat on body

S

3/32

Substitution model — a simple example
(define square (lambda (x) (* x x)))

(square 4)
square =» [procedure (x) (* x x)]
4 >4

(* 4 4)

16

(define average (lambda (x y) (/ (+ x y) 2)))

(average 5 (square 3))
(average 5 (* 3 3))
(average 5 9)

(/ (+59) 2)

(/ 14 2)

7

4/32

A less trivial example: factorial

» Compute n factorial, defined as
n! = n(n-1)(n-2)(n-3)...1

» How can we capture this in a procedure, using the idea of
finding a common pattern?

5/32

How to design recursive algorithms

* Follow the general approach:
1. Wishful thinking
2. Decompose the problem
3. Identify non-decomposable (smallest) problems

1. Wishful thinking
» Assume the desired procedure exists.
+ Want to implement fact? OK, assume it exists.
« BUT, it only solves a smaller version of the problem.

—This is just like finding a common pattern: but here,
solving the bigger problem involves the same
pattern in a smaller problem

6/32

2. Decompose the problem

« Solve a problem by
1. solve a smaller instance (using wishful thinking)
2. convert that solution to the desired solution

« Step 2 requires creativity!
« Must design the strategy before writing Scheme code.
* n! =n(n-1)(n-2)... = n[(n-1)(n-2)...] = n * (n-1)!

« solve the smaller instance, multiply it by n to get solution

(define fact
(lambda (n) (* n (fact (- n 1)))))

7132

Minor Difficulty

(define fact
(lambda (n) (* n (fact (- n 1)))))

(fact 2)

(* 2 (fact 1))

(* 2 (* 1 (fact 0)))

(* 2 (* 1 (* 0 (fact -1)))) ...doh!

8/32

3. Identify non-decomposable problems

» Decomposing is not enough by itself
» Must identify the "smallest" problems and solve directly

« Define 1! = 1 (or alternatively define 0! = 1)

(define fact
(lambda (n)
(if (= n 1)
1
(* n (fact (- n 1)))))

9/32

General form of recursive algorithms

« test, base case, recursive case

(define fact

(lambda (n)
(if (= n 1) ; test for base case
1 ; base case

(* n (fact (- n 1))))) ;recursive case

* base case: smallest (non-decomposable) problem
« recursive case: larger (decomposable) problem

» more complex algorithms may have multiple base cases or
multiple recursive cases (requiring more than one test)

10/32

Summary of recursive processes

« Design a recursive algorithm by
1. wishful thinking
2. decompose the problem
3. identify non-decomposable (smallest) problems

» Recursive algorithms have
1. test
2. base case
3. recursive case

11/32

(define fact (lambda (n)
(if (=n 1) 1 (* n (fact (- n 1))))))

(fact 3)

(if (=3 1) 1 (¥ 3 (fact (- 3 1))))

(if #f 1 (* 3 (fact (- 3 1))))

(* 3 (fact (- 3 1)))

(* 3 (fact 2))

(* 3 (if (=2 1) 1 (* 2 (fact (- 2 1)))))

(* 3 (if #f 1 (* 2 (fact (- 2 1)))))

(* 3 (* 2 (fact (- 2 1))))

(* 3 (* 2 (fact 1)))

(* 3 (* 2 (if (=1 1) 1 (*1 (fact (- 1 1))))))
(* 3 (* 2 (if #t 1 (*1 (fact (-1 1))))))
(* 3 (* 2 1))

(* 3 2)

6

12/32

(define fact (lambda (n)
(if (=n 1) 1 (* n (fact (- n 1))))))

(fact 3)

Note the “shape” of this
process

—~

* 3 (fact 2))

—~

* 3 (* 2 (fact 1)))

(* 3 (* 21))
(* 3 2)

13/32

The fact procedure uses a recursive algorithm

« For a recursive algorithm:
« In the substitution model, the expression keeps growing
(fact 3)
(* 3 (fact 2))
(* 3 (* 2 (fact 1)))

14/32

Recursive algorithms use increasing space
« In a recursive algorithm, bigger operands consume more space

(fact 4)

(* 4 (fact 3))

(* 4 (* 3 (fact 2)))

(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (*21)))

24

8)
(* 8 (fact 7))
* 7 (fact 6)))
(* 8 (* 7 (* 6 (fact 5))))

(s x 7 (v
(* 8 (* 7 (*
(* 8 (* 7 (*

fact 1))))))))

(* 5 (¥ 4 (* 3 (*2 (
(* 5 (* 4 (* 3 (*21))))))
(* 5 (* 4 (¥ 32)))))

15/32

A Problem With Recursive Algorithms

« Try computing 101!
101*100%99*98*97*96* ... *2* 1
* How much space do we consume with pending operations?

* Better idea:

start with 1, remember that 2 is next
compute 1 * 2, remember that 3 is next
compute 2 * 3, remember that 4 is next
compute 6 * 4, remember that 5 is next

o e o e

compute 94259477598383594208516231244829367495623127947
025437683278893534169775993162214765030878615918083469
116234900035495995833697063026032640000000000000000000
00000, and stop

« This is an iterative algorithm — it uses constant space

16/32

Iterative algorithm to compute 4! as a table

« In this table:
+ One column for each piece of information used
* One row for each step Current value Next to compute

first row
handles 0! product
—__|

cleanly
(oot 1 }——

* The last row is the one where i > n
* The answer is in the product column of the last row

17132

Iterative factorial in scheme
(define ifact (lambda (n) (ifact-helper 1 1 n)))
initial
row of table

(define ifact-helper (lambda (product i n)

(if (> i n) compute
next row
product of table

(ifact-helper (* product i) (+ i 1) n))

) “Manswer is in product column of last row

at last row wheni > n
18/32

Partial trace for (ifact 4) Partial trace for (ifact 4)

(define ifact-helper (lambda (product i n) (define ifact-helper (lambda (product i n)
(if (> i n) product (if (> i n) product
(ifact-helper (* product i) (ifact-helper (* product i)
(+ i 1) n)))) (+ i 1) n))))
(ifact 4) (ifact 4)
(ifact-helper 1 1 4) (ifact-helper 1 1 4)
(if (> 1 4) 1 (ifact-helper (* 1 1) (+ 1 1) 4)) Note the “shape” of this
(ifact-helper 1 2 4) (ifact-helper 1 2 4) process
(if (> 2 4) 1 (ifact-helper (* 1 2) (+ 2 1) 4))
(ifact-helper 2 3 4) (ifact-helper 2 3 4)
(if (> 3 4) 2 (ifact-helper (* 2 3) (+ 3 1) 4))
(ifact-helper 6 4 4) (ifact-helper 6 4 4)
(if (> 4 4) 6 (ifact-helper (* 6 4) (+ 4 1) 4))
(ifact-helper 24 5 4) (ifact-helper 24 5 4)
(if (> 5 4) 24 (ifact-helper (* 24 5) (+ 5 1) 4))
24 24

19/32 20/32

Recursive process = pending operations . . .
p Iterative process = no pending operations
when procedure calls itself
« lterative factorial:
(define ifact-helper (lambda (product i n)
(if (> count n) product
(ifact-helper (* product i)

» Recursive factorial:

(define fact (lambda (n)
(if (=n 1) 1

(* n (fact (- n 1))) (+ i 1) n))))
)))
pending operation (ifact-helper 1 1 4)|no pending operations

(fact 4) (ifact-helper 1 2 4)

(* 4 (fact 3)) (ifact-helper 2 3 4)

(* 4 (* 3 (fact 2))) (ifact-helper 6 4 4)

(* 4 (* 3 (* 2 (fact 1)))) (ifact-helper 24 5 4)
» Pending operations make the expression grow continuously « Fixed space because no pending operations

21/32 22/32

Summary of iterative processes Why is our code correct?
« Iterative algorithms use constant space + How do we know that our code will always work?

.

» How to develop an iterative algorithm
1. Figure out a way to accumulate partial answers

Proof by authority — someone with whom we dare not
disagree says it is right!

) i + For example
2. Write out a table to analyze precisely: « Proof by statistics — we try enough examples to
—initialization of first row convince ourselves that it will always work!

E.g. keep trying, but bring sandwiches and a cot
Proof by faith — we really, really, really believe that we 5
always write correct code!
E.g. the Pset is due in 5 minutes and | don’t have time §
Formal proof — we break down and use mathematical
« Iterative algorithms have no pending operations logic to determine that code is correot.

when the procedure calls itself

—update rules for other rows
—how to know when to stop
3. Translate rules into Scheme code

.

23/32 24/32

Proof by induction
Proof by induction is a very powerful tool in predicate logic
P(0)
Vn:P(n)— P(n+1)
~.Vn: P(n)

Informally, if you can:
1. Show that some proposition P is true for n=0

2. Show that whenever P is true for some legal value of n, then it
follows that P is true for n+1

...then you can conclude that P is true for all legal values of n

25/32

A simple example
1=

1+2

1+2+4
1+2+4+8=

26/32

An example of proof by induction

P(n): i 2i=2"_1

Base case: n:O:ZO :21—1 .
Inductive step: Y : P(n) — P(n+1)
22: — 2n+l 1 P(n)
i=0

Z 20 4 2m = (2 1y 42
i=0

n+l

>2=27-1 Pu+l) @,
i=0

Steps in proof by induction

1. Define the predicate P(n) (induction hypothesis)
+ Decide what the variable n denotes
+ Decide the universe over which n applies

2. Prove that P(0) is true (base case)
3. Prove that P(n) implies P(n+1) for all n (inductive step)
» Do this by assuming that P(n) is true, then trying to

prove that P(n+1) is true

4. Conclude that P(n) is true for all n by the principle of
induction.

28/32

Back to factorial

« Induction hypothesis P(n):

“our recursive procedure for £act correctly computes n!
for all integer values of n, starting at 1”

(define fact
(lambda (n)
(if (= n 1)
1
(* n (fact (- n 1))))))

29/32

Proof by induction that fact works

« Base case: does this work when n=1?

* Note that this is P(1), not P(0) — we need to adjust the
base case because our universe of legal values for n
includes only the positive integers

» Yes — the IF statement guarantees that in this case we only
evaluate the consequent expression: thus we return 1,
which is 1!

(define fact
(lambda (n)
(if (= n 1)
1
(* n (fact (- n 1))))))

30/32

Proof by induction that fact works Lessons learned

+ Inductive step: We assume it works for some legal value of n > 0... « |Induction provides the basis for Supporting recursive
* 80 (fact n) computes n! correctly procedure definitions
--- and show that it works correctly for n+1 « In designing procedures, we should rely on the same
* What does (fact n+1) compute? thought process
» Use the substitution model: - X
(fact n+l) Find the base case, and create solution
(f (= n+l 1) 1 (* n+l (fact (- n+l 1)))) + Determine how to reduce to a simpler version of same
(if #£ 1 (* n+l (fact (- n+l 1)))) problem, plus some additional operations
(* n+l (fact (- n+l 1))) + Assume code will work for simpler problem, and design
(* n+l (fact n)) solution to extended problem
(* n+l n!)
(n+1) !

« By induction, fact will always compute what we expected, provided
the input is in the right range (n > 0)

31/32 32/32

