Orders of Growth of Processes

Today’s topics

- Resources used by a program to solve a problem of size \(n \)
 - Time
 - Space
- Define order of growth
- Visualizing resources utilization using our model of evaluation
- Relating types of programs to orders of growth

Resources matter

- How many seconds in a year?

 \[
 60 \times 60 \times 24 \times 365 = \pi \times 10^7
 \]
- Lifetime of Universe (since “Big Bang”) = \(10^{10} \) years
- Computer “clock” = \(3 \times 10^9 \) operations/sec
- Operations since big bang

 \[
 \pi \times 10^7 \times 10^{10} \times 3 \times 10^9 = 10^{27}
 \]
- Number of atoms in the universe = \(10^{79} \)
- Imagine that every atom is a contemporary computer!
 - Total number of operations = \(10^{106} \)
- Shannon/Knuth: Number of possible chess games = \(10^{120} \)
- Lloyd QM universe lifetime: \(= 10^{122} \) ops on \(10^{90} \) bits

Orders of growth of processes

- Suppose \(n \) is a parameter that measures the size of a problem
- Let \(R(n) \) be the amount of resources needed to compute a procedure of size \(n \)
- We say \(R(n) \) has order of growth \(\Theta(f(n)) \) if there are constants \(k_1 \) and \(k_2 \) such that

 \[
 k_1 f(n) \leq R(n) \leq k_2 f(n)
 \]

 for large \(n \) (> \(k \))
- Two common resources are space, measured by the number of deferred operations, and time, measured by the number of primitive steps.

We need to specify what is primitive – typically we will use simple arithmetic operations and simple data structure operations (to be defined next time)

Partial trace for \((fact \ 4)\)

\[
\begin{align*}
\text{(define fact (lambda (n) (if (= n 1) 1 (* n (fact (- n 1))))))} \\
\text{(fact 4)} \\
&\text{(* 4 (fact 3))} \\
&\text{(* 4 (if (> 3 1) (* 3 (fact (- 3 1))))} \\
&\text{(* 4 (* 3 (fact 2)))} \\
&\text{(* 4 (* 3 (* 2 (fact 1)))))} \\
&\text{(* 4 (* 3 (* 2 (* 1 (fact (- 1 1)))))} \\
&\text{(* 4 (* 3 (* 2 2)))} \\
&\text{(* 4 6)} \\
&24
\end{align*}
\]

Partial trace for \((ifact \ 4)\)

\[
\begin{align*}
\text{(define ifact-helper (lambda (product count n) (if (> count n) product (ifact-helper (* product count) (+ count 1) n))))} \\
\text{(define ifact (lambda (n) (ifact-helper 1 1 n))} \\
\text{(ifact 4)} \\
&\text{(ifact-helper 1 1 4)} \\
&\text{(if (> 1 4) 1 (ifact-helper (* 1 1) (+ 1 1) 4))} \\
&\text{ifact-helper 1 2 4} \\
&\text{(if (> 2 4) 1 (ifact-helper (* 1 2) (+ 2 1) 4))} \\
&\text{ifact-helper 2 2 4} \\
&\text{(if (> 3 4) 2 (ifact-helper (* 2 2) (+ 3 1) 4))} \\
&\text{ifact-helper 2 2 4} \\
&\text{(if (> 4 4) 6 (ifact-helper (* 2 2) (* 4 1) 4))} \\
&\text{ifact-helper 24 4} \\
&\text{(if (> 4 4) 6 (ifact-helper (* 4 2) (* 5 1) 4))} \\
&\text{24}
\end{align*}
\]
Examples of orders of growth

- **FACT**
 - Space $\Theta(n)$ – linear – (n-1 deferred ops)
 - Time $\Theta(n)$ – linear – (2(n-1) primitive ops)

- **IFACT**
 - Space $\Theta(1)$ – constant
 - Time $\Theta(n)$ – linear – (2n primitive ops)

```lisp
(define fact (lambda (n)
  (if (= n 1) 1
      (* n (fact (- n 1))))))

(define ifact-helper
  (lambda (product count n)
    (if (> count n) product
      (ifact-helper
       (* product count)
       (+ count 1) n)))))

(define ifact
  (lambda (n) (ifact-helper 1 1 n)))
```

Computing Fibonacci

- Consider the following function
 - $F(n) = 0$ if $n = 0$
 - $F(n) = 1$ if $n = 1$
 - $F(n) = F(n-1) + F(n-2)$ otherwise

```lisp
(define fib
  (lambda (n)
    (cond ((= n 0) 0)
           ((= n 1) 1)
           (else (+ (fib (- n 1))
                    (fib (- n 2)))))))
```

Fibonacci

```lisp
Fib 4
Fib 3 Fib 2
Fib 1 Fib 1 Fib 2
Fib 0
Fib 1 Fib 0
```

A tree recursion

- **Orders of growth for Fibonacci**
 - Let t_n be the number of steps that we need to take to solve the case for size n. Then
 - $t_0 = t_1 + t_2 = 2 t_2 = 4 t_4 = 8 t_6 = 2^{n/2}$
 - So in time we have $\Theta(2^n)$ -- exponential
 - In space, we have one deferred operation for each increment of the argument -- $\Theta(n)$ -- linear

```lisp
(define fib
  (lambda (n)
    (cond ((= n 0) 0)
           ((= n 1) 1)
           (else (+ (fib (- n 1))
                    (fib (- n 2)))))))
```

Towers of Hanoi

- Three posts, and a set of different size disks
- any stack must be sorted in decreasing order from bottom to top
- the goal is to move the disks one at a time, while preserving these conditions, until the entire stack has moved from one post to another

```lisp
; Towers of Hanoi
```
Towers of Hanoi

(define move-tower
 (lambda (size from to extra)
 (cond ((= size 0) #t)
 (else (move-tower (- size 1) from extra to)
 (print-move from to)
 (move-tower (- size 1) extra to from))))

(define print-move
 (lambda (from to)
 (display "Move top disk from ")
 (display from)
 (display " to ")
 (display to)
 (newline)))

Small Towers of Hanoi problem

(move-tower 3 1 2 3)
Move top disk from 1 to 2
Move top disk from 1 to 3
Move top disk from 2 to 3
Move top disk from 1 to 2
Move top disk from 3 to 1
Move top disk from 3 to 2
Move top disk from 1 to 2

(move-tower 5 1 2 3)
Move top disk from 1 to 2
Move top disk from 1 to 3
Move top disk from 2 to 3
Move top disk from 1 to 2
Move top disk from 3 to 1
Move top disk from 3 to 2
Move top disk from 1 to 2
Move top disk from 1 to 3
Move top disk from 2 to 3
Move top disk from 2 to 1
Move top disk from 3 to 1
Move top disk from 2 to 3
Move top disk from 1 to 2
Move top disk from 3 to 1
Move top disk from 3 to 2
Move top disk from 1 to 2
Move top disk from 3 to 1
Move top disk from 2 to 3
Move top disk from 2 to 1
Move top disk from 3 to 1
Move top disk from 3 to 2
Move top disk from 1 to 2

A tree recursion

Orders of growth for towers of Hanoi

• Let \(t_n \) be the number of steps that we need to take to solve the case for \(n \) disks. Then
 \[t_n = 2t_{n-1} + 1 = 2(2t_{n-2} +1) + 1 = 2^n - 1 \]
• So in time we have \(\Theta(2^n) \) -- exponential
• In space, we have one deferred operation for each increment of the stack of disks -- \(\Theta(n) \) -- linear

Using different processes for the same goal

• We want to compute \(a^b \), just using multiplication and addition
• Remember our stages:
 • Wishful thinking
 • Decomposition
 • Smallest sized subproblem

Using different processes for the same goal

• Wishful thinking
 • Assume that the procedure `my-expt` exists, but only solves smaller versions of the same problem
 • Decompose problem into solving smaller version and using result
 \[a^b = a*a*...a = a*a^{(b-1)} \]

(define my-expt
 (lambda (a b)
 (* a (my-expt a (- b 1)))))

Using different processes for the same goal

• Wishful thinking
 • Assume that the procedure `my-expt` exists, but only solves smaller versions of the same problem
 • Decompose problem into solving smaller version and using result
 \[a^b = a*a*...a = a*a^{(b-1)} \]

(define my-expt
 (lambda (a b)
 (* a (my-expt a (- b 1)))))
Using different processes for the same goal

- Identify smallest size subproblem
- \(a^0 = 1\)

\[
\text{(define my-expt}
\text{(lambda (a b))}
\text{(if (= b 0)}
\text{1}
\text{(* a (my-expt a (- b 1))))))
\]

Using different processes for the same goal

- Orders of growth
 - Time: linear
 - Space: linear

Using different processes for the same goal

- Are there other ways to decompose this problem?
- Use the idea of state variables, and table evolution

Iterative algorithm to compute \(a^b\) as a table

- In this table:
 - One column for each piece of information used
 - One row for each step

<table>
<thead>
<tr>
<th>Product</th>
<th>Counter</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>(a)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

- The last row is the one where counter = 0
- The answer is in the product column of the last row

Iterative algorithm to compute \(a^b\)

\[
\text{(define exp-i (lambda (a b) (exp-i-help 1 b a)))}
\]

\[
\text{(define exp-i-help}
\text{(lambda (prod count a))}
\text{(if (= count 0)}
\text{prod}
\text{(* prod a) (- count 1) a))})
\]

Orders of growth
- Space: constant
- Time: linear
Another kind of process

- Let's compute a^b just using multiplication and addition
 - If b is even, then $a^b = (a^2)^{(b/2)}$
 - If b is odd, then $a^b = a \cdot a^{(b-1)}$
 - Note that here, we reduce the problem in half in one step

```scheme
(define fast-exp-1
  (lambda (a b)
    (cond ((= b 1) a)
          ((even? b) (fast-exp-1 (* a a) (/ b 2)))
          (else (* a (fast-exp-1 a (- b 1)))))))
```

Orders of growth

- If n even, then 1 step reduces to $n/2$ sized problem
- If n odd, 2 steps reduces to $n/2$ sized problem
- Thus in $2k$ steps reduces to $n/2^k$ sized problem
- We are done when the problem size is just 1, which implies order of growth in time of $\Theta(\log n)$ -- logarithmic
- Space is similarly $\Theta(\log n)$ -- logarithmic

Another example of different processes

- Suppose we want to compute the elements of Pascal’s triangle

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
```

Fun with Pascal’s Triangle

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
```

Pascal’s triangle

- We need some notation
 - Let’s order the rows, starting with $n=0$ for the first row
 - The nth row then has $n+1$ elements, also ordered from 0
 - Let’s use $P(j,n)$ to denote the jth element of the nth row.
 - We want to find ways to compute $P(j,n)$ for any n, and any j, such that $0 \leq j \leq n$

Pascal’s triangle the traditional way

- Traditionally, one thinks of Pascal’s triangle being formed by the following informal method:
 - The first element of a row is 1
 - The last element of a row is 1
 - To get the second element of a row, add the first and second element of the previous row
 - To get the kth element of a row, add the $(k-1)$’st and k’th element of the previous row
Pascal’s triangle the traditional way

- Here is a procedure that just captures that idea:

```scheme
(define pascal
  (lambda (j n)
    (cond ((= j 0) 1)
          ((= j n) 1)
          (else (+ (pascal (- j 1) (- n 1))
                   (pascal j (- n 1)))))))
```

- What kind of process does this generate?
- Looks a lot like fibonacci
- There are two recursive calls to the procedure in the general case
- In fact, this has a time complexity that is exponential and a space complexity that is linear

Pascal’s triangle the traditional way

```scheme
(define pascal
  (lambda (j n)
    (cond ((= j 0) 1)
          ((= j n) 1)
          (else (+ (pascal (- j 1) (- n 1))
                   (pascal j (- n 1)))))))
```

Solving the same problem a different way

- Can we do better?
- Yes, but we need to do some thinking.
- Pascal’s triangle actually captures the idea of how many different ways there are of choosing objects from a set, where the order of choice doesn’t matter.
- \(P(0, n) \) is the number of ways of choosing collections of no objects, which is trivially 1.
- \(P(n, n) \) is the number of ways of choosing collections of \(n \) objects, which is obviously 1, since there is only one set of \(n \) things.
- \(P(j, n) \) is the number of ways of picking sets of \(j \) objects from a set of \(n \) objects.

Solving the same problem a different way

- So what is the number of ways of picking sets of \(j \) objects from a set of \(n \) objects?
- Pick the first one — there are \(n \) possible choices
- Then pick the second one — there are \((n-1) \) choices left.
- Keep going until you have picked \(j \) objects

\[
\frac{n(n-1)...(n-j+1)}{(n-j)!}
\]

- But the order in which we pick the objects doesn’t matter, and there are \(j! \) different orders, so we have

\[
\frac{n(n-1)...(n-j+1)}{(n-j)! j!} = \frac{n!}{j!(n-j)!}
\]

Solving the same problem a different way

- What is complexity of this approach?
- Three different evaluations of fact
  ```scheme
  (define pascal
    (lambda (j n)
      (/ (fact n)
          (* (fact (- n j)) (fact j)))))
  ```
- What is complexity of this approach?
- Three different evaluations of fact
 - Each is linear in time and constant in space
 - So combination takes 3n steps, which is also linear in time; and has at most n deferred operations, which is also linear in space

Solving the same problem a different way

- What about computing with a different version of fact?
  ```scheme
  (define pascal
    (lambda (j n)
      (/ (ifact n)
          (* (ifact (- n j)) (ifact j)))))
  ```
- What is complexity of this approach?
- Three different evaluations of fact
 - Each is linear in time and constant in space
 - So combination takes 3n steps, which is also linear in time; and has no deferred operations, which is also constant in space
Solving the same problem the direct way

\[
\frac{n!}{(n-j)!} \cdot \frac{n(n-1) \ldots (n-j+1)}{j(j-1) \ldots 1}
\]

• Now, why not just do the computation directly?

```scheme
(define pascal
  (lambda (j n)
    (/ (help n 1 (+ n (- j) 1))
       (help j 1 1))))

(define help
  (lambda (k prod end)
    (if (= k end)
        (* k prod)
        (help (- k 1) (* prod k) end))))
```

So why do these orders of growth matter?

• Main concern is general order of growth
 • Exponential is very expensive as the problem size grows.
 • Some clever thinking can sometimes convert an inefficient approach into a more efficient one.
 • In practice, actual performance may improve by considering different variations, even though the overall order of growth stays the same.

• So what is complexity here?
 • Help is an iterative procedure, and has constant space and linear time
 • This version of Pascal only uses two versions of help (as opposed the previous version that used three versions of ifact).
 • In practice, this means this version uses fewer multiplies that the previous one, but it is still linear in time, and hence has the same order of growth.