Today’s topics
• Rules for evaluation
• Orders of growth of processes
• Relating types of procedures to different orders of growth

Rules for evaluation
• “Elementary expressions” are left alone: Elementary expressions are
 • Numerals
 • initial names of primitive procedures
 • lambda expressions, naming procedures
• A name bound by DEFINE: Rewrite the name as the value it is
 associated with by the definition
• IF: If the evaluation of the predicate expression terminates in non-false value
 • then rewrite the IF expression as the value of the consequent,
 • otherwise, rewrite the IF expression as the value of the alternative.
• Combination:
 • Evaluate the operator expression to get the procedure, and
 evaluate the operand expressions to get the arguments,
 • if the operator names a primitive procedure, do whatever magic
 the primitive procedure does.
 • if the operator names a compound procedure, evaluate the body of
 the compound procedure with the arguments substituted for the formal
 parameters in the body.

Orders of growth of processes
• Suppose \(n \) is a parameter that measures the size of a problem.
• Let \(R(n) \) be the amount of resources needed to compute
 a procedure of size \(n \).
• We say \(R(n) \) has order of growth \(\Theta(f(n)) \) if there are
 constants \(k, k_1 \) and \(k_2 \) such that \(k_1 f(n) \leq R(n) \leq k_2 f(n) \)
 for large \(n \).
• Two common resources are space, measured by the
 number of deferred operations, and time, measured by the
 number of primitive steps.

We need to specify what is primitive – typically we
will use simple arithmetic operations and simple
data structure operations (to be defined next time)

Orders of growth of processes
• Suppose \(n \) is a parameter that measures the size of a problem.
• Let \(R(n) \) be the amount of resources needed to compute
 a procedure of size \(n \).
• We say \(R(n) \) has order of growth \(\Theta(f(n)) \) if there are
 constants \(k, k_1 \) and \(k_2 \) such that \(k_1 f(n) \leq R(n) \leq k_2 f(n) \)
 for large \(n \).
• Two common resources are space, measured by the
 number of deferred operations, and time, measured by the
 number of primitive steps.

We need to specify what is primitive – typically we
will use simple arithmetic operations and simple
data structure operations (to be defined next time)

Partial trace for \((\text{fact} \ 4)\)
(define fact (lambda (n)
 (if (= n 1) 1
 (* n (fact (- n 1))))))
(fact 4)
(if (= 4 1) 1 (* 4 (fact (- 4 1))))
(* 4 (fact 3))
(* 4 (if (= 3 1) 1 (* 3 (fact (- 3 1)))))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 2))
(* 4 6)
24

Partial trace for \((\text{ifact} \ 4)\)
(define ifact-helper (lambda (product count n)
 (if (> count n) product
 (ifact-helper (* product count)
 (+ count 1) n))))
(define ifact (lambda (n) (ifact-helper 1 1 n))
(ifact 4)
(ifact-helper 1 1 4)
(if (> 1 4) 1 (ifact-helper (* 1 1) (+ 1 1) 4))
(ifact-helper 1 2 4)
(if (> 2 4) 1 (ifact-helper (* 1 2) (+ 2 1) 4))
(ifact-helper 2 3 4)
(if (> 3 4) 2 (ifact-helper (* 2 3) (+ 3 1) 4))
(ifact-helper 6 4 4)
(if (> 4 4) 6 (ifact-helper (* 6 4) (+ 4 1) 4))
(ifact-helper 24 5 4)
(if (> 5 4) 24 (ifact-helper (* 24 5) (+ 5 1) 4))
24

Examples of orders of growth
• FACT
 • Space \(\Theta(n) \) – linear – \((n-1)\) deferred ops
 • Time \(\Theta(n) \) – linear – \((2(n-1))\) primitive ops

Examples of orders of growth
• FACT
 • Space \(\Theta(n) \) – constant
 • Time \(\Theta(n) \) – linear – \((2n)\) primitive ops
Computing Fibonacci

- Consider the following function
- \(F(n) = 0 \) if \(n = 0 \)
- \(F(n) = 1 \) if \(n = 1 \)
- \(F(n) = F(n-1) + F(n-2) \) otherwise

\[
\text{Fibonacci}\\(\text{define fib}\\\quad \text{(lambda (n)}\\\quad \quad \text{(cond ((= n 0) 0))}\\\quad \quad \text{((= n 1) 1))}\\\quad \quad \text{(else (+ (fib (- n 1))}\\\quad \quad \quad \text{(fib (- n 2)))))})\\\end{align*}

New expression:
\[
\text{(cond (<predicate1> <consequent> <consequent> …)}\\\quad \text{(<predicate2> <consequent> <consequent> …)}\\\quad \text{…}\\\quad \text{(else <consequent> <consequent>))}
\]

A tree recursion

\[
\text{(define fib}\\\quad \text{(lambda (n)}\\\quad \quad \text{(cond ((= n 0) 0))}\\\quad \quad \text{((= n 1) 1))}\\\quad \quad \text{(else (+ (fib (- n 1))}\\\quad \quad \quad \text{(fib (- n 2)))))})\\\end{align*}

Orders of growth for Fibonacci

- Let \(t_n \) be the number of steps that we need to take to solve the case for size \(n \). Then
- \(t_n = t_{n-1} + t_{n-2} = 2t_{n-2} = 4t_{n-4} = 8t_{n-6} = 2^n/2 \)
- So in time we have \(\Theta(2^n) \) -- exponential
- In space, we have one deferred operation for each increment of the argument -- \(\Theta(n) \) -- linear

Towers of Hanoi

- Three posts, and a set of different size disks
- any stack must be sorted in decreasing order from bottom to top
- the goal is to move the disks one at a time, while preserving these conditions, until the entire stack has moved from one post to another

\[
\text{Towers of Hanoi}\\(\text{define move-tower}\\\quad \text{(lambda (size from to extra)}\\\quad \quad \text{(cond ((= size 0) true))}\\\quad \quad \text{(else (move-tower (- size 1) from extra to)}\\\quad \quad \quad \text{(print-move from to)}\\\quad \quad \quad \text{(move-tower (- size 1) extra to from)))))\\\end{align*}

\[
\text{(define print-move}\\\quad \text{(lambda (from to)}\\\quad \quad \text{(write-line `Move top disk from`}\\\quad \quad \quad \text{`to `)})\\\quad \quad \text{(write-line from)})\\\quad \text{(write-line ` to `)})\\\quad \text{(write-line to))})\\\end{align*}
A tree recursion

Orders of growth for towers of Hanoi

- Let t_n be the number of steps that we need to take to solve the case for n disks. Then
- $t_n = 2t_{n-1} + 1 = 2(2t_{n-2} + 1) + 1 = 2^n - 1$
- So in time we have $\Theta(2^n)$ -- exponential
- In space, we have one deferred operation for each increment of the stack of disks -- $\Theta(n)$ -- linear

Using different processes for the same goal

- We want to compute a^b, just using multiplication and addition
- Remember our stages:
 - Wishful thinking
 - Decomposition
 - Smallest sized subproblem

Using different processes for the same goal

- Assume that the procedure my-expt exists, but only solves smaller versions of the same problem
- Decompose problem into solving smaller version and using result
 \[a^b = a*a^*a = a*a^{(b-1)} \]

Using different processes for the same goal

- Identify smallest size subproblem
 \[a^0 = 1 \]

Using different processes for the same goal

- Orders of growth
 - Time: linear
 - Space: linear
Using different processes for the same goal

• Are there other ways to decompose this problem?
• Use the idea of state variables, and table evolution

Iterative algorithm to compute \(a^b \) as a table

• In this table:
 • One column for each piece of information used
 • One row for each step

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b-1</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b-2</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b-4</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• The last row is the one where counter = 0
• The answer is in the product column of the last row

Iterative algorithm to compute \(a^b \)

\[
\text{(define exp-i (lambda (a b) (exp-i-help 1 b a)))}
\]
\[
\text{(define exp-i-help (lambda (prod count a)}
\]
\[
\text{ (if (= count 0) prod)}
\]
\[
\text{ (exp-i-help (* prod a) (- count 1) a))})
\]

Orders of growth

\[
\text{(define fast-exp-1 (lambda (a b)}
\]
\[
\text{ (cond ((= b 1) a)}
\]
\[
\text{ ((even? b) (fast-exp-1 (* a a) (/ b 2))}
\]
\[
\text{ (else (* a (fast-exp-1 a (- b 1))))}))}
\]

Another kind of process

• Let’s compute \(a^b \) just using multiplication and addition

• If \(b \) is even, then \(a^b = (a^2)^{b/2} \)
• If \(b \) is odd, then \(a^b = a \cdot a^{b-1} \)
• Note that here, we reduce the problem in half in one step

\[
\text{(define fast-exp-1 (lambda (a b)}
\]
\[
\text{ (cond ((= b 1) a)}
\]
\[
\text{ ((even? b) (fast-exp-1 (* a a) (/ b 2))}
\]
\[
\text{ (else (* a (fast-exp-1 a (- b 1))))}))}
\]
Another example of different processes

• Suppose we want to compute the elements of Pascal’s triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Pascal’s triangle

• We need some notation
 • Let’s order the rows, starting with n=0 for the first row
 • The nth row then has n+1 elements
 • Let’s use P(j, n) to denote the jth element of the nth row.
 • We want to find ways to compute P(j, n) for any n, and any j, such that 0 <= j <= n

Pascal’s triangle the traditional way

• Traditionally, one thinks of Pascal’s triangle being formed by the following informal method:
 • The first element of a row is 1
 • The last element of a row is 1
 • To get the second element of a row, add the first and second element of the previous row
 • To get the kth element of a row, and the (k-1)st and kth element of the previous row

Here is a procedure that just captures that idea:

(define pascal
 (lambda (j n)
 (cond ((= j 0) 1)
 ((= j n) 1)
 (else (+ (pascal (- j 1) (- n 1))
 (pascal j (- n 1)))))))

Pascal’s triangle the traditional way

• Here is a procedure that just captures that idea:

(define pascal
 (lambda (j n)
 (cond ((= j 0) 1)
 ((= j n) 1)
 (else (+ (pascal (- j 1) (- n 1))
 (pascal j (- n 1)))))))

Solving the same problem a different way

• Can we do better?
 • Yes, but we need to do some thinking.
 • Pascal’s triangle actually captures the idea of how many different ways there are of choosing objects from a set, where the order of choice doesn’t matter.
 • P(0, n) is the number of ways of choosing collections of no objects, which is trivially 1.
 • P(n, n) is the number of ways of choosing collections of n objects, which is obviously 1, since there is only one set of n things.
 • P(j, n) is the number of ways of picking sets of j objects from a set of n objects.

• What kind of process does this generate?
 • Looks a lot like fibonacci
 • There are two recursive calls to the procedure in the general case
 • In fact, this has a time complexity that is exponential and a space complexity that is linear.
Solving the same problem a different way

- So what is the number of ways of picking sets of \(j \) objects from a set of \(n \) objects?
- Pick the first one – there are \(n \) possible choices
- Then pick the second one – there are \((n-1) \) choices left.
- Keep going until you have picked \(j \) objects

\[
n(n-1)\ldots(n-j+1) = \frac{n!}{(n-j)!}
\]
- But the order in which we pick the objects doesn’t matter, and there are \(j! \) different orders, so we have

\[
\frac{n!}{(n-j)!j!} = \frac{n(n-1)\ldots(n-j+1)}{j!}
\]

Solving the same problem the direct way

- Now, why not just do the computation directly?

\[
\text{define pascal} \\
\lambda (j \ n) \\
\left/ \ (\text{help} \ n \ 1 \ (+ \ n \ (- \ j \ 1) \ 1)) \right/
\]

\[
\text{define help} \\
\lambda (k \ prod \ end) \\
\left/ \ (\text{if} \ (= \ k \ end) \right/
\left/ \ (* \ k \ prod) \ \\
\left/ \ (\text{help} \ (- \ k \ 1) \ (* \ prod \ k) \ end))) \right/
\]

Solving the same problem a different way

- So here is an easy way to implement this idea:

\[
\text{define pascal} \\
\lambda (j \ n) \\
\left/ \ (\text{fact} \ n) \right/ \\
\left/ \ (* \ (\text{fact} \ (- \ n \ j)) \ (\text{fact} \ j))) \right/
\]

- What is complexity of this approach?
- Three different evaluations of fact
- Each is linear in time and space
- So combination takes \(3n \) steps, which is also linear in time; and has at most \(n \) deferred operations, which is also linear in space

Solving the same problem the direct way

- What about computing with a different version of fact?

\[
\text{define pascal} \\
\lambda (j \ n) \\
\left/ \ (\text{ifact} \ n) \right/ \\
\left/ \ (* \ (\text{ifact} \ (- \ n \ j)) \ (\text{ifact} \ j))) \right/
\]

- What is complexity of this approach?
- Three different evaluations of fact
- Each is linear in time and constant in space
- So combination takes \(3n \) steps, which is also linear in time; and has no deferred operations, which is also constant in space

So why do these orders of growth matter?

- Main concern is general order of growth
- Exponential is very expensive as the problem size grows.
- Some clever thinking can sometimes convert an inefficient approach into a more efficient one.
- In practice, actual performance may improve by considering different variations, even though the overall order of growth stays the same.