This Lecture

• Substitution model
• An example using the substitution model
• Designing recursive procedures
• Designing iterative procedures
• Proving that our code works

Substitution model

• A way to figure out what happens during evaluation
• Not really what happens in the computer

Rules of substitution model:
1. If expression is self-evaluating (e.g. a number), just return value
2. If expression is a name, replace with value associated with that name
3. If expression is a lambda, create procedure and return
4. If expression is special form (e.g. if) follow specific rules for evaluating subexpressions
5. If expression is a compound expression
 • Evaluate subexpressions in any order
 • If first subexpression is primitive (or built-in) procedure, just apply it to values of other subexpressions
 • If first subexpression is compound procedure (created by lambda), substitute value of each subexpression for corresponding procedure parameter in body of procedure, then repeat on body

Substitution model – a simple example

```lisp
(define square (lambda (x) (* x x)))

1. (square 4)
   1. Square ⇒ [procedure (x) (* x x)]
   2. 4 ⇒ 4
   2. (* 4 4)
   3. 16
```

A less trivial procedure: factorial

• Compute n factorial, defined as \(n! = n(n-1)(n-2)(n-3)\ldots 1 \)
• How can we capture this in a procedure, using the idea of finding a common pattern?

```lisp
(define square (lambda (x) (* x x)))
(define average (lambda (x y) (/ (+ x y) 2)))

(average 5 (square 3))
(average 5 (* 3 3))
(average 5 9)  ; first evaluate operands, then substitute (applicative order)
(/ (+ 5 9) 2)
(/ 14 2)     ; if operator is a primitive procedure, replace by result of operation
7
```
How to design recursive algorithms

- follow the general pattern:
 1. wishful thinking
 2. decompose the problem
 3. identify non-decomposable (smallest) problems

1. Wishful thinking
- Assume the desired procedure exists.
- want to implement fact? OK, assume it exists.
- BUT, only solves a smaller version of the problem.

Note – this is really reducing a problem to a common pattern, in this case that solving a bigger problem involves the same pattern in a smaller problem.

2. Decompose the problem
- Solve a problem by
 1. solve a smaller instance (using wishful thinking)
 2. convert that solution to the desired solution

- Step 2 requires creativity!
 - Must design the strategy before coding.
 - n! = n(n-1)(n-2)... = n[(n-1)(n-2)...] = n * (n-1)!
 - solve the smaller instance, multiply it by n to get solution

(define fact
 (lambda (n) (* n (fact (- n 1)))))

3. Identify non-decomposable problems
- Decomposing not enough by itself
- Must identify the "smallest" problems and solve directly
- Define 1! = 1

(define fact
 (lambda (n)
 (if (= n 1) 1 (* n (fact (- n 1)))))

General form of recursive algorithms

- test, base case, recursive case

(define fact
 (lambda (n)
 (if (= n 1) ; test for base case
 1 ; base case
 (* n (fact (- n 1)) ; recursive case
))))

- base case: smallest (non-decomposable) problem
- recursive case: larger (decomposable) problem

Summary of recursive processes

- Design a recursive algorithm by
 1. wishful thinking
 2. decompose the problem
 3. identify non-decomposable (smallest) problems

- Recursive algorithms have
 1. test
 2. recursive case
 3. base case

(define fact
 (lambda (n)
 (if (= n 1) 1 (* n (fact (- n 1))))))

(fact 3)
(if (= 3 1) 1 (* 3 (fact (- 3 1))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (fact (- 3 1)))
(* 3 (fact 2))
(* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1)))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (fact (- 2 1))))
(* 3 (* 2 (fact 1)))
(* 3 (* 2 (if (= 1 1) 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 (if #f 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 1))
(* 3 2)
6
The fact procedure is a recursive algorithm

- A recursive algorithm:
 - In the substitution model, the expression keeps growing
 (fact 3)
 (* 3 (fact 2))
 (* 3 (* 2 (fact 1)))
 - Other ways to identify will be described next time

Recursive algorithms

- In a recursive algorithm, bigger operands => more space
 (define fact (lambda (n)
 (if (= n 1) 1
 (* n (fact (- n 1)))))
 (fact 4)
 (* 4 (fact 3))
 (* 4 (* 3 (fact 2)))
 (* 4 (* 3 (* 2 (fact 1))))
 (* 4 (* 3 (* 2 1))))
 ...
 24

Iterative algorithm to compute 4! as a table

- In this table:
 - One column for each piece of information used
 - One row for each step

<table>
<thead>
<tr>
<th>product</th>
<th>counter</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

- The last row is the one where counter > n
- The answer is in the product column of the last row

Partial trace for (ifact 4)

(define ifact-helper (lambda (product count n)
 (if (> count n) product
 (ifact-helper (* product count) (+ count 1) n))))

(ifact 4)
(ifact-helper 1 1 4)
(ifact-helper 1 2 4)
(ifact-helper 1 3 4)
(ifact-helper 2 3 4)
(ifact-helper 6 4 4)
(ifact-helper 24 5 4)
(ifact-helper 24 5 (ifact-helper (* 24 5) (+ 5 1) 4))

Iterative factorial in scheme

- (define ifact (lambda (n) (ifact-helper 1 1 n)))

Iterative = no pending operations when procedure calls itself

- Recursive factorial:
 (define fact (lambda (n)
 (if (= n 1) 1
 (* n (fact (- n 1)))))

- Pending ops make the expression grow continuously
Iterative = no pending operations

- Iterative factorial:
  ```scheme
  (define ifact-helper (lambda (product count n)
    (if (> count n) product
      (ifact-helper (* product count)
        (+ count 1) n)))
  ```

 - (ifact-helper 1 1 4)
 - (ifact-helper 1 2 4)
 - (ifact-helper 2 3 4)
 - (ifact-helper 6 4 4)
 - (ifact-helper 24 5 4)

- Fixed size because no pending operations

Summary of iterative processes

- Iterative algorithms have constant space
- How to develop an iterative algorithm
 - figure out a way to accumulate partial answers
 - write out a table to analyze precisely:
 - initialization of first row
 - update rules for other rows
 - how to know when to stop
 - translate rules into scheme code

- Iterative algorithms have no pending operations when the procedure calls itself

Why is our code correct?

- How do we know that our code will always work?
 - Proof by authority – someone with whom we dare not disagree says it is right!
 - For example
 - Proof by statistics – we try enough examples to convince ourselves that it will always work!
 - E.g. keep trying
 - Proof by faith – we really, really, really believe that we always write correct code!
 - E.g. the Pset is due in 5 minutes and I don’t have time
 - Formal proof – we break down and use mathematical logic to determine that code is correct.

Proof by induction

- A very powerful tool in predicate logic is proof by induction:

 \[P(0) \]
 \[\forall n : P(n) \rightarrow P(n + 1) \]
 \[\therefore \forall n : P(n) \]

- Informally: If you can show that proposition is true for case of \(n = 0 \), and you can show that if the proposition is true for some legal value of \(n \), then it follows that it is true for \(n + 1 \), then you can conclude that the proposition is true for all legal values of \(n \)

Motivating Example

- \(1 = 1 \)
- \(1 + 2 = 3 \)
- \(1 + 2 + 4 = 7 \)
- \(1 + 2 + 4 + 8 = 15 \)
- \(\ldots \)

\[\sum_{i=0}^{n} 2^i = ? \]
Back to our factorial case.

- P(n): our recursive procedure for fact correctly computes n! for all integer values of n, starting at 1.
- \(\text{(define fact}
\begin{align*}
\text{(lambda (n)} & \\
\text{\quad (if (= n 1))} & \\
\text{\quad 1)} & \\
\text{\quad (* n (fact (- n 1))))))
\end{align*}\)

Fact works by induction

- Base case: does this work when n=1? (Note that we need to adjust the base case to reflect the fact that our universe includes only the positive integers)
 - Sure – the IF statement guarantees that in this case we only evaluate the consequent expression: thus we return 1, which is 1!
 \(\text{(define fact}
\begin{align*}
\text{(lambda (n)} & \\
\text{\quad (if (= n 1))} & \\
\text{\quad 1)} & \\
\text{\quad (* n (fact (- n 1))))))
\end{align*}\)

Fact works by induction

- Inductive step: We can assume that our code works correctly for some value of n, we want to use this to show that the code then works correctly for n+1.
 - In general case, value of expression (fact (+ n 1)) will reduce by our substitution model to
 \(-(* (+ n 1)(fact n)) \)
 - Our substitution model says to get the values of the subexpressions: * and (+ n 1) are easy. By induction, the remaining subexpression returns the value of n!
 - Hence the value of the expression is (n+1)! or (n+1)!
 - By induction, this code will always compute what we expected, provided the input is in the right range (n > 0).

Lessons learned

- Induction provides the basis for supporting recursive procedure definitions
 - In designing procedures, we should rely on the same thought process
 - Find the base case, and create solution
 - Determine how to reduce to a simpler version of same problem, plus some additional operations
 - Assume code will work for simpler problem, and design solution to extended problem